LAPACK 3.3.0

sgrqts.f

Go to the documentation of this file.
00001       SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
00002      $                   BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
00003 *
00004 *  -- LAPACK test routine (version 3.1) --
00005 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       INTEGER            LDA, LDB, LWORK, M, P, N
00010 *     ..
00011 *     .. Array Arguments ..
00012       REAL               A( LDA, * ), AF( LDA, * ), R( LDA, * ),
00013      $                   Q( LDA, * ),
00014      $                   B( LDB, * ), BF( LDB, * ), T( LDB, * ),
00015      $                   Z( LDB, * ), BWK( LDB, * ),
00016      $                   TAUA( * ), TAUB( * ),
00017      $                   RESULT( 4 ), RWORK( * ), WORK( LWORK )
00018 *     ..
00019 *
00020 *  Purpose
00021 *  =======
00022 *
00023 *  SGRQTS tests SGGRQF, which computes the GRQ factorization of an
00024 *  M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
00025 *
00026 *  Arguments
00027 *  =========
00028 *
00029 *  M       (input) INTEGER
00030 *          The number of rows of the matrix A.  M >= 0.
00031 *
00032 *  P       (input) INTEGER
00033 *          The number of rows of the matrix B.  P >= 0.
00034 *
00035 *  N       (input) INTEGER
00036 *          The number of columns of the matrices A and B.  N >= 0.
00037 *
00038 *  A       (input) REAL array, dimension (LDA,N)
00039 *          The M-by-N matrix A.
00040 *
00041 *  AF      (output) REAL array, dimension (LDA,N)
00042 *          Details of the GRQ factorization of A and B, as returned
00043 *          by SGGRQF, see SGGRQF for further details.
00044 *
00045 *  Q       (output) REAL array, dimension (LDA,N)
00046 *          The N-by-N orthogonal matrix Q.
00047 *
00048 *  R       (workspace) REAL array, dimension (LDA,MAX(M,N))
00049 *
00050 *  LDA     (input) INTEGER
00051 *          The leading dimension of the arrays A, AF, R and Q.
00052 *          LDA >= max(M,N).
00053 *
00054 *  TAUA    (output) REAL array, dimension (min(M,N))
00055 *          The scalar factors of the elementary reflectors, as returned
00056 *          by SGGQRC.
00057 *
00058 *  B       (input) REAL array, dimension (LDB,N)
00059 *          On entry, the P-by-N matrix A.
00060 *
00061 *  BF      (output) REAL array, dimension (LDB,N)
00062 *          Details of the GQR factorization of A and B, as returned
00063 *          by SGGRQF, see SGGRQF for further details.
00064 *
00065 *  Z       (output) REAL array, dimension (LDB,P)
00066 *          The P-by-P orthogonal matrix Z.
00067 *
00068 *  T       (workspace) REAL array, dimension (LDB,max(P,N))
00069 *
00070 *  BWK     (workspace) REAL array, dimension (LDB,N)
00071 *
00072 *  LDB     (input) INTEGER
00073 *          The leading dimension of the arrays B, BF, Z and T.
00074 *          LDB >= max(P,N).
00075 *
00076 *  TAUB    (output) REAL array, dimension (min(P,N))
00077 *          The scalar factors of the elementary reflectors, as returned
00078 *          by SGGRQF.
00079 *
00080 *  WORK    (workspace) REAL array, dimension (LWORK)
00081 *
00082 *  LWORK   (input) INTEGER
00083 *          The dimension of the array WORK, LWORK >= max(M,P,N)**2.
00084 *
00085 *  RWORK   (workspace) REAL array, dimension (M)
00086 *
00087 *  RESULT  (output) REAL array, dimension (4)
00088 *          The test ratios:
00089 *            RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
00090 *            RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
00091 *            RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
00092 *            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
00093 *
00094 *  =====================================================================
00095 *
00096 *     .. Parameters ..
00097       REAL               ZERO, ONE
00098       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00099       REAL               ROGUE
00100       PARAMETER          ( ROGUE = -1.0E+10 )
00101 *     ..
00102 *     .. Local Scalars ..
00103       INTEGER            INFO
00104       REAL               ANORM, BNORM, ULP, UNFL, RESID
00105 *     ..
00106 *     .. External Functions ..
00107       REAL               SLAMCH, SLANGE, SLANSY
00108       EXTERNAL           SLAMCH, SLANGE, SLANSY
00109 *     ..
00110 *     .. External Subroutines ..
00111       EXTERNAL           SGEMM, SGGRQF, SLACPY, SLASET, SORGQR,
00112      $                   SORGRQ, SSYRK
00113 *     ..
00114 *     .. Intrinsic Functions ..
00115       INTRINSIC          MAX, MIN, REAL
00116 *     ..
00117 *     .. Executable Statements ..
00118 *
00119       ULP = SLAMCH( 'Precision' )
00120       UNFL = SLAMCH( 'Safe minimum' )
00121 *
00122 *     Copy the matrix A to the array AF.
00123 *
00124       CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
00125       CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
00126 *
00127       ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
00128       BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
00129 *
00130 *     Factorize the matrices A and B in the arrays AF and BF.
00131 *
00132       CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
00133      $             LWORK, INFO )
00134 *
00135 *     Generate the N-by-N matrix Q
00136 *
00137       CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
00138       IF( M.LE.N ) THEN
00139          IF( M.GT.0 .AND. M.LT.N )
00140      $      CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
00141          IF( M.GT.1 )
00142      $      CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
00143      $                   Q( N-M+2, N-M+1 ), LDA )
00144       ELSE
00145          IF( N.GT.1 )
00146      $      CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
00147      $                   Q( 2, 1 ), LDA )
00148       END IF
00149       CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
00150 *
00151 *     Generate the P-by-P matrix Z
00152 *
00153       CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
00154       IF( P.GT.1 )
00155      $   CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
00156       CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
00157 *
00158 *     Copy R
00159 *
00160       CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
00161       IF( M.LE.N )THEN
00162          CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
00163      $                LDA )
00164       ELSE
00165          CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
00166          CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
00167      $                LDA )
00168       END IF
00169 *
00170 *     Copy T
00171 *
00172       CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB )
00173       CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB )
00174 *
00175 *     Compute R - A*Q'
00176 *
00177       CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
00178      $            LDA, ONE, R, LDA )
00179 *
00180 *     Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
00181 *
00182       RESID = SLANGE( '1', M, N, R, LDA, RWORK )
00183       IF( ANORM.GT.ZERO ) THEN
00184          RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
00185       ELSE
00186          RESULT( 1 ) = ZERO
00187       END IF
00188 *
00189 *     Compute T*Q - Z'*B
00190 *
00191       CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B,
00192      $            LDB, ZERO, BWK, LDB )
00193       CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB,
00194      $            Q, LDA, -ONE, BWK, LDB )
00195 *
00196 *     Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
00197 *
00198       RESID = SLANGE( '1', P, N, BWK, LDB, RWORK )
00199       IF( BNORM.GT.ZERO ) THEN
00200          RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
00201       ELSE
00202          RESULT( 2 ) = ZERO
00203       END IF
00204 *
00205 *     Compute I - Q*Q'
00206 *
00207       CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
00208       CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
00209      $            LDA )
00210 *
00211 *     Compute norm( I - Q'*Q ) / ( N * ULP ) .
00212 *
00213       RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
00214       RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
00215 *
00216 *     Compute I - Z'*Z
00217 *
00218       CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
00219       CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
00220      $            LDB )
00221 *
00222 *     Compute norm( I - Z'*Z ) / ( P*ULP ) .
00223 *
00224       RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
00225       RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
00226 *
00227       RETURN
00228 *
00229 *     End of SGRQTS
00230 *
00231       END
 All Files Functions