LAPACK 3.3.0

zpstrf.f

Go to the documentation of this file.
00001       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
00002 *
00003 *  -- LAPACK routine (version 3.2.2)                                  --
00004 *     
00005 *  -- Contributed by Craig Lucas, University of Manchester / NAG Ltd. --
00006 *  -- June 2010                                                       --
00007 *
00008 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00009 *
00010 *     .. Scalar Arguments ..
00011       DOUBLE PRECISION   TOL
00012       INTEGER            INFO, LDA, N, RANK
00013       CHARACTER          UPLO
00014 *     ..
00015 *     .. Array Arguments ..
00016       COMPLEX*16         A( LDA, * )
00017       DOUBLE PRECISION   WORK( 2*N )
00018       INTEGER            PIV( N )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *  ZPSTRF computes the Cholesky factorization with complete
00025 *  pivoting of a complex Hermitian positive semidefinite matrix A.
00026 *
00027 *  The factorization has the form
00028 *     P' * A * P = U' * U ,  if UPLO = 'U',
00029 *     P' * A * P = L  * L',  if UPLO = 'L',
00030 *  where U is an upper triangular matrix and L is lower triangular, and
00031 *  P is stored as vector PIV.
00032 *
00033 *  This algorithm does not attempt to check that A is positive
00034 *  semidefinite. This version of the algorithm calls level 3 BLAS.
00035 *
00036 *  Arguments
00037 *  =========
00038 *
00039 *  UPLO    (input) CHARACTER*1
00040 *          Specifies whether the upper or lower triangular part of the
00041 *          symmetric matrix A is stored.
00042 *          = 'U':  Upper triangular
00043 *          = 'L':  Lower triangular
00044 *
00045 *  N       (input) INTEGER
00046 *          The order of the matrix A.  N >= 0.
00047 *
00048 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
00049 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
00050 *          n by n upper triangular part of A contains the upper
00051 *          triangular part of the matrix A, and the strictly lower
00052 *          triangular part of A is not referenced.  If UPLO = 'L', the
00053 *          leading n by n lower triangular part of A contains the lower
00054 *          triangular part of the matrix A, and the strictly upper
00055 *          triangular part of A is not referenced.
00056 *
00057 *          On exit, if INFO = 0, the factor U or L from the Cholesky
00058 *          factorization as above.
00059 *
00060 *  LDA     (input) INTEGER
00061 *          The leading dimension of the array A.  LDA >= max(1,N).
00062 *
00063 *  PIV     (output) INTEGER array, dimension (N)
00064 *          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
00065 *
00066 *  RANK    (output) INTEGER
00067 *          The rank of A given by the number of steps the algorithm
00068 *          completed.
00069 *
00070 *  TOL     (input) DOUBLE PRECISION
00071 *          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
00072 *          will be used. The algorithm terminates at the (K-1)st step
00073 *          if the pivot <= TOL.
00074 *
00075 *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
00076 *          Work space.
00077 *
00078 *  INFO    (output) INTEGER
00079 *          < 0: If INFO = -K, the K-th argument had an illegal value,
00080 *          = 0: algorithm completed successfully, and
00081 *          > 0: the matrix A is either rank deficient with computed rank
00082 *               as returned in RANK, or is indefinite.  See Section 7 of
00083 *               LAPACK Working Note #161 for further information.
00084 *
00085 *  =====================================================================
00086 *
00087 *     .. Parameters ..
00088       DOUBLE PRECISION   ONE, ZERO
00089       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00090       COMPLEX*16         CONE
00091       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
00092 *     ..
00093 *     .. Local Scalars ..
00094       COMPLEX*16         ZTEMP
00095       DOUBLE PRECISION   AJJ, DSTOP, DTEMP
00096       INTEGER            I, ITEMP, J, JB, K, NB, PVT
00097       LOGICAL            UPPER
00098 *     ..
00099 *     .. External Functions ..
00100       DOUBLE PRECISION   DLAMCH
00101       INTEGER            ILAENV
00102       LOGICAL            LSAME, DISNAN
00103       EXTERNAL           DLAMCH, ILAENV, LSAME, DISNAN
00104 *     ..
00105 *     .. External Subroutines ..
00106       EXTERNAL           ZDSCAL, ZGEMV, ZHERK, ZLACGV, ZPSTF2, ZSWAP,
00107      $                   XERBLA
00108 *     ..
00109 *     .. Intrinsic Functions ..
00110       INTRINSIC          DBLE, DCONJG, MAX, MIN, SQRT, MAXLOC
00111 *     ..
00112 *     .. Executable Statements ..
00113 *
00114 *     Test the input parameters.
00115 *
00116       INFO = 0
00117       UPPER = LSAME( UPLO, 'U' )
00118       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00119          INFO = -1
00120       ELSE IF( N.LT.0 ) THEN
00121          INFO = -2
00122       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00123          INFO = -4
00124       END IF
00125       IF( INFO.NE.0 ) THEN
00126          CALL XERBLA( 'ZPSTRF', -INFO )
00127          RETURN
00128       END IF
00129 *
00130 *     Quick return if possible
00131 *
00132       IF( N.EQ.0 )
00133      $   RETURN
00134 *
00135 *     Get block size
00136 *
00137       NB = ILAENV( 1, 'ZPOTRF', UPLO, N, -1, -1, -1 )
00138       IF( NB.LE.1 .OR. NB.GE.N ) THEN
00139 *
00140 *        Use unblocked code
00141 *
00142          CALL ZPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
00143      $                INFO )
00144          GO TO 230
00145 *
00146       ELSE
00147 *
00148 *     Initialize PIV
00149 *
00150          DO 100 I = 1, N
00151             PIV( I ) = I
00152   100    CONTINUE
00153 *
00154 *     Compute stopping value
00155 *
00156          DO 110 I = 1, N
00157             WORK( I ) = DBLE( A( I, I ) )
00158   110    CONTINUE
00159          PVT = MAXLOC( WORK( 1:N ), 1 )
00160          AJJ = DBLE( A( PVT, PVT ) )
00161          IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN
00162             RANK = 0
00163             INFO = 1
00164             GO TO 230
00165          END IF
00166 *
00167 *     Compute stopping value if not supplied
00168 *
00169          IF( TOL.LT.ZERO ) THEN
00170             DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
00171          ELSE
00172             DSTOP = TOL
00173          END IF
00174 *
00175 *
00176          IF( UPPER ) THEN
00177 *
00178 *           Compute the Cholesky factorization P' * A * P = U' * U
00179 *
00180             DO 160 K = 1, N, NB
00181 *
00182 *              Account for last block not being NB wide
00183 *
00184                JB = MIN( NB, N-K+1 )
00185 *
00186 *              Set relevant part of first half of WORK to zero,
00187 *              holds dot products
00188 *
00189                DO 120 I = K, N
00190                   WORK( I ) = 0
00191   120          CONTINUE
00192 *
00193                DO 150 J = K, K + JB - 1
00194 *
00195 *              Find pivot, test for exit, else swap rows and columns
00196 *              Update dot products, compute possible pivots which are
00197 *              stored in the second half of WORK
00198 *
00199                   DO 130 I = J, N
00200 *
00201                      IF( J.GT.K ) THEN
00202                         WORK( I ) = WORK( I ) +
00203      $                              DBLE( DCONJG( A( J-1, I ) )*
00204      $                                    A( J-1, I ) )
00205                      END IF
00206                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
00207 *
00208   130             CONTINUE
00209 *
00210                   IF( J.GT.1 ) THEN
00211                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
00212                      PVT = ITEMP + J - 1
00213                      AJJ = WORK( N+PVT )
00214                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
00215                         A( J, J ) = AJJ
00216                         GO TO 220
00217                      END IF
00218                   END IF
00219 *
00220                   IF( J.NE.PVT ) THEN
00221 *
00222 *                    Pivot OK, so can now swap pivot rows and columns
00223 *
00224                      A( PVT, PVT ) = A( J, J )
00225                      CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
00226                      IF( PVT.LT.N )
00227      $                  CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
00228      $                              A( PVT, PVT+1 ), LDA )
00229                      DO 140 I = J + 1, PVT - 1
00230                         ZTEMP = DCONJG( A( J, I ) )
00231                         A( J, I ) = DCONJG( A( I, PVT ) )
00232                         A( I, PVT ) = ZTEMP
00233   140                CONTINUE
00234                      A( J, PVT ) = DCONJG( A( J, PVT ) )
00235 *
00236 *                    Swap dot products and PIV
00237 *
00238                      DTEMP = WORK( J )
00239                      WORK( J ) = WORK( PVT )
00240                      WORK( PVT ) = DTEMP
00241                      ITEMP = PIV( PVT )
00242                      PIV( PVT ) = PIV( J )
00243                      PIV( J ) = ITEMP
00244                   END IF
00245 *
00246                   AJJ = SQRT( AJJ )
00247                   A( J, J ) = AJJ
00248 *
00249 *                 Compute elements J+1:N of row J.
00250 *
00251                   IF( J.LT.N ) THEN
00252                      CALL ZLACGV( J-1, A( 1, J ), 1 )
00253                      CALL ZGEMV( 'Trans', J-K, N-J, -CONE, A( K, J+1 ),
00254      $                           LDA, A( K, J ), 1, CONE, A( J, J+1 ),
00255      $                           LDA )
00256                      CALL ZLACGV( J-1, A( 1, J ), 1 )
00257                      CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
00258                   END IF
00259 *
00260   150          CONTINUE
00261 *
00262 *              Update trailing matrix, J already incremented
00263 *
00264                IF( K+JB.LE.N ) THEN
00265                   CALL ZHERK( 'Upper', 'Conj Trans', N-J+1, JB, -ONE,
00266      $                        A( K, J ), LDA, ONE, A( J, J ), LDA )
00267                END IF
00268 *
00269   160       CONTINUE
00270 *
00271          ELSE
00272 *
00273 *        Compute the Cholesky factorization P' * A * P = L * L'
00274 *
00275             DO 210 K = 1, N, NB
00276 *
00277 *              Account for last block not being NB wide
00278 *
00279                JB = MIN( NB, N-K+1 )
00280 *
00281 *              Set relevant part of first half of WORK to zero,
00282 *              holds dot products
00283 *
00284                DO 170 I = K, N
00285                   WORK( I ) = 0
00286   170          CONTINUE
00287 *
00288                DO 200 J = K, K + JB - 1
00289 *
00290 *              Find pivot, test for exit, else swap rows and columns
00291 *              Update dot products, compute possible pivots which are
00292 *              stored in the second half of WORK
00293 *
00294                   DO 180 I = J, N
00295 *
00296                      IF( J.GT.K ) THEN
00297                         WORK( I ) = WORK( I ) +
00298      $                              DBLE( DCONJG( A( I, J-1 ) )*
00299      $                                    A( I, J-1 ) )
00300                      END IF
00301                      WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
00302 *
00303   180             CONTINUE
00304 *
00305                   IF( J.GT.1 ) THEN
00306                      ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
00307                      PVT = ITEMP + J - 1
00308                      AJJ = WORK( N+PVT )
00309                      IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
00310                         A( J, J ) = AJJ
00311                         GO TO 220
00312                      END IF
00313                   END IF
00314 *
00315                   IF( J.NE.PVT ) THEN
00316 *
00317 *                    Pivot OK, so can now swap pivot rows and columns
00318 *
00319                      A( PVT, PVT ) = A( J, J )
00320                      CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
00321                      IF( PVT.LT.N )
00322      $                  CALL ZSWAP( N-PVT, A( PVT+1, J ), 1,
00323      $                              A( PVT+1, PVT ), 1 )
00324                      DO 190 I = J + 1, PVT - 1
00325                         ZTEMP = DCONJG( A( I, J ) )
00326                         A( I, J ) = DCONJG( A( PVT, I ) )
00327                         A( PVT, I ) = ZTEMP
00328   190                CONTINUE
00329                      A( PVT, J ) = DCONJG( A( PVT, J ) )
00330 *
00331 *
00332 *                    Swap dot products and PIV
00333 *
00334                      DTEMP = WORK( J )
00335                      WORK( J ) = WORK( PVT )
00336                      WORK( PVT ) = DTEMP
00337                      ITEMP = PIV( PVT )
00338                      PIV( PVT ) = PIV( J )
00339                      PIV( J ) = ITEMP
00340                   END IF
00341 *
00342                   AJJ = SQRT( AJJ )
00343                   A( J, J ) = AJJ
00344 *
00345 *                 Compute elements J+1:N of column J.
00346 *
00347                   IF( J.LT.N ) THEN
00348                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
00349                      CALL ZGEMV( 'No Trans', N-J, J-K, -CONE,
00350      $                           A( J+1, K ), LDA, A( J, K ), LDA, CONE,
00351      $                           A( J+1, J ), 1 )
00352                      CALL ZLACGV( J-1, A( J, 1 ), LDA )
00353                      CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
00354                   END IF
00355 *
00356   200          CONTINUE
00357 *
00358 *              Update trailing matrix, J already incremented
00359 *
00360                IF( K+JB.LE.N ) THEN
00361                   CALL ZHERK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
00362      $                        A( J, K ), LDA, ONE, A( J, J ), LDA )
00363                END IF
00364 *
00365   210       CONTINUE
00366 *
00367          END IF
00368       END IF
00369 *
00370 *     Ran to completion, A has full rank
00371 *
00372       RANK = N
00373 *
00374       GO TO 230
00375   220 CONTINUE
00376 *
00377 *     Rank is the number of steps completed.  Set INFO = 1 to signal
00378 *     that the factorization cannot be used to solve a system.
00379 *
00380       RANK = J - 1
00381       INFO = 1
00382 *
00383   230 CONTINUE
00384       RETURN
00385 *
00386 *     End of ZPSTRF
00387 *
00388       END
 All Files Functions