LAPACK 3.3.0
|
00001 DOUBLE PRECISION FUNCTION DLANSB( NORM, UPLO, N, K, AB, LDAB, 00002 $ WORK ) 00003 * 00004 * -- LAPACK auxiliary routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER NORM, UPLO 00011 INTEGER K, LDAB, N 00012 * .. 00013 * .. Array Arguments .. 00014 DOUBLE PRECISION AB( LDAB, * ), WORK( * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * DLANSB returns the value of the one norm, or the Frobenius norm, or 00021 * the infinity norm, or the element of largest absolute value of an 00022 * n by n symmetric band matrix A, with k super-diagonals. 00023 * 00024 * Description 00025 * =========== 00026 * 00027 * DLANSB returns the value 00028 * 00029 * DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' 00030 * ( 00031 * ( norm1(A), NORM = '1', 'O' or 'o' 00032 * ( 00033 * ( normI(A), NORM = 'I' or 'i' 00034 * ( 00035 * ( normF(A), NORM = 'F', 'f', 'E' or 'e' 00036 * 00037 * where norm1 denotes the one norm of a matrix (maximum column sum), 00038 * normI denotes the infinity norm of a matrix (maximum row sum) and 00039 * normF denotes the Frobenius norm of a matrix (square root of sum of 00040 * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 00041 * 00042 * Arguments 00043 * ========= 00044 * 00045 * NORM (input) CHARACTER*1 00046 * Specifies the value to be returned in DLANSB as described 00047 * above. 00048 * 00049 * UPLO (input) CHARACTER*1 00050 * Specifies whether the upper or lower triangular part of the 00051 * band matrix A is supplied. 00052 * = 'U': Upper triangular part is supplied 00053 * = 'L': Lower triangular part is supplied 00054 * 00055 * N (input) INTEGER 00056 * The order of the matrix A. N >= 0. When N = 0, DLANSB is 00057 * set to zero. 00058 * 00059 * K (input) INTEGER 00060 * The number of super-diagonals or sub-diagonals of the 00061 * band matrix A. K >= 0. 00062 * 00063 * AB (input) DOUBLE PRECISION array, dimension (LDAB,N) 00064 * The upper or lower triangle of the symmetric band matrix A, 00065 * stored in the first K+1 rows of AB. The j-th column of A is 00066 * stored in the j-th column of the array AB as follows: 00067 * if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; 00068 * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). 00069 * 00070 * LDAB (input) INTEGER 00071 * The leading dimension of the array AB. LDAB >= K+1. 00072 * 00073 * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), 00074 * where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 00075 * WORK is not referenced. 00076 * 00077 * ===================================================================== 00078 * 00079 * .. Parameters .. 00080 DOUBLE PRECISION ONE, ZERO 00081 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00082 * .. 00083 * .. Local Scalars .. 00084 INTEGER I, J, L 00085 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE 00086 * .. 00087 * .. External Subroutines .. 00088 EXTERNAL DLASSQ 00089 * .. 00090 * .. External Functions .. 00091 LOGICAL LSAME 00092 EXTERNAL LSAME 00093 * .. 00094 * .. Intrinsic Functions .. 00095 INTRINSIC ABS, MAX, MIN, SQRT 00096 * .. 00097 * .. Executable Statements .. 00098 * 00099 IF( N.EQ.0 ) THEN 00100 VALUE = ZERO 00101 ELSE IF( LSAME( NORM, 'M' ) ) THEN 00102 * 00103 * Find max(abs(A(i,j))). 00104 * 00105 VALUE = ZERO 00106 IF( LSAME( UPLO, 'U' ) ) THEN 00107 DO 20 J = 1, N 00108 DO 10 I = MAX( K+2-J, 1 ), K + 1 00109 VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) 00110 10 CONTINUE 00111 20 CONTINUE 00112 ELSE 00113 DO 40 J = 1, N 00114 DO 30 I = 1, MIN( N+1-J, K+1 ) 00115 VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) 00116 30 CONTINUE 00117 40 CONTINUE 00118 END IF 00119 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 00120 $ ( NORM.EQ.'1' ) ) THEN 00121 * 00122 * Find normI(A) ( = norm1(A), since A is symmetric). 00123 * 00124 VALUE = ZERO 00125 IF( LSAME( UPLO, 'U' ) ) THEN 00126 DO 60 J = 1, N 00127 SUM = ZERO 00128 L = K + 1 - J 00129 DO 50 I = MAX( 1, J-K ), J - 1 00130 ABSA = ABS( AB( L+I, J ) ) 00131 SUM = SUM + ABSA 00132 WORK( I ) = WORK( I ) + ABSA 00133 50 CONTINUE 00134 WORK( J ) = SUM + ABS( AB( K+1, J ) ) 00135 60 CONTINUE 00136 DO 70 I = 1, N 00137 VALUE = MAX( VALUE, WORK( I ) ) 00138 70 CONTINUE 00139 ELSE 00140 DO 80 I = 1, N 00141 WORK( I ) = ZERO 00142 80 CONTINUE 00143 DO 100 J = 1, N 00144 SUM = WORK( J ) + ABS( AB( 1, J ) ) 00145 L = 1 - J 00146 DO 90 I = J + 1, MIN( N, J+K ) 00147 ABSA = ABS( AB( L+I, J ) ) 00148 SUM = SUM + ABSA 00149 WORK( I ) = WORK( I ) + ABSA 00150 90 CONTINUE 00151 VALUE = MAX( VALUE, SUM ) 00152 100 CONTINUE 00153 END IF 00154 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 00155 * 00156 * Find normF(A). 00157 * 00158 SCALE = ZERO 00159 SUM = ONE 00160 IF( K.GT.0 ) THEN 00161 IF( LSAME( UPLO, 'U' ) ) THEN 00162 DO 110 J = 2, N 00163 CALL DLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ), 00164 $ 1, SCALE, SUM ) 00165 110 CONTINUE 00166 L = K + 1 00167 ELSE 00168 DO 120 J = 1, N - 1 00169 CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, 00170 $ SUM ) 00171 120 CONTINUE 00172 L = 1 00173 END IF 00174 SUM = 2*SUM 00175 ELSE 00176 L = 1 00177 END IF 00178 CALL DLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM ) 00179 VALUE = SCALE*SQRT( SUM ) 00180 END IF 00181 * 00182 DLANSB = VALUE 00183 RETURN 00184 * 00185 * End of DLANSB 00186 * 00187 END