LAPACK 3.3.0

zdrvls.f

Go to the documentation of this file.
00001       SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
00002      $                   NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
00003      $                   COPYB, C, S, COPYS, WORK, RWORK, IWORK, NOUT )
00004 *
00005 *  -- LAPACK test routine (version 3.1.1) --
00006 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00007 *     January 2007
00008 *
00009 *     .. Scalar Arguments ..
00010       LOGICAL            TSTERR
00011       INTEGER            NM, NN, NNB, NNS, NOUT
00012       DOUBLE PRECISION   THRESH
00013 *     ..
00014 *     .. Array Arguments ..
00015       LOGICAL            DOTYPE( * )
00016       INTEGER            IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
00017      $                   NVAL( * ), NXVAL( * )
00018       DOUBLE PRECISION   COPYS( * ), RWORK( * ), S( * )
00019       COMPLEX*16         A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
00020      $                   WORK( * )
00021 *     ..
00022 *
00023 *  Purpose
00024 *  =======
00025 *
00026 *  ZDRVLS tests the least squares driver routines ZGELS, CGELSX, CGELSS,
00027 *  ZGELSY and CGELSD.
00028 *
00029 *  Arguments
00030 *  =========
00031 *
00032 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00033 *          The matrix types to be used for testing.  Matrices of type j
00034 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00035 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00036 *          The matrix of type j is generated as follows:
00037 *          j=1: A = U*D*V where U and V are random unitary matrices
00038 *               and D has random entries (> 0.1) taken from a uniform
00039 *               distribution (0,1). A is full rank.
00040 *          j=2: The same of 1, but A is scaled up.
00041 *          j=3: The same of 1, but A is scaled down.
00042 *          j=4: A = U*D*V where U and V are random unitary matrices
00043 *               and D has 3*min(M,N)/4 random entries (> 0.1) taken
00044 *               from a uniform distribution (0,1) and the remaining
00045 *               entries set to 0. A is rank-deficient.
00046 *          j=5: The same of 4, but A is scaled up.
00047 *          j=6: The same of 5, but A is scaled down.
00048 *
00049 *  NM      (input) INTEGER
00050 *          The number of values of M contained in the vector MVAL.
00051 *
00052 *  MVAL    (input) INTEGER array, dimension (NM)
00053 *          The values of the matrix row dimension M.
00054 *
00055 *  NN      (input) INTEGER
00056 *          The number of values of N contained in the vector NVAL.
00057 *
00058 *  NVAL    (input) INTEGER array, dimension (NN)
00059 *          The values of the matrix column dimension N.
00060 *
00061 *  NNB     (input) INTEGER
00062 *          The number of values of NB and NX contained in the
00063 *          vectors NBVAL and NXVAL.  The blocking parameters are used
00064 *          in pairs (NB,NX).
00065 *
00066 *  NBVAL   (input) INTEGER array, dimension (NNB)
00067 *          The values of the blocksize NB.
00068 *
00069 *  NXVAL   (input) INTEGER array, dimension (NNB)
00070 *          The values of the crossover point NX.
00071 *
00072 *  NNS     (input) INTEGER
00073 *          The number of values of NRHS contained in the vector NSVAL.
00074 *
00075 *  NSVAL   (input) INTEGER array, dimension (NNS)
00076 *          The values of the number of right hand sides NRHS.
00077 *
00078 *  THRESH  (input) DOUBLE PRECISION
00079 *          The threshold value for the test ratios.  A result is
00080 *          included in the output file if RESULT >= THRESH.  To have
00081 *          every test ratio printed, use THRESH = 0.
00082 *
00083 *  TSTERR  (input) LOGICAL
00084 *          Flag that indicates whether error exits are to be tested.
00085 *
00086 *  A       (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)
00087 *          where MMAX is the maximum value of M in MVAL and NMAX is the
00088 *          maximum value of N in NVAL.
00089 *
00090 *  COPYA   (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)
00091 *
00092 *  B       (workspace) COMPLEX*16 array, dimension (MMAX*NSMAX)
00093 *          where MMAX is the maximum value of M in MVAL and NSMAX is the
00094 *          maximum value of NRHS in NSVAL.
00095 *
00096 *  COPYB   (workspace) COMPLEX*16 array, dimension (MMAX*NSMAX)
00097 *
00098 *  C       (workspace) COMPLEX*16 array, dimension (MMAX*NSMAX)
00099 *
00100 *  S       (workspace) DOUBLE PRECISION array, dimension
00101 *                      (min(MMAX,NMAX))
00102 *
00103 *  COPYS   (workspace) DOUBLE PRECISION array, dimension
00104 *                      (min(MMAX,NMAX))
00105 *
00106 *  WORK    (workspace) COMPLEX*16 array, dimension
00107 *                      (MMAX*NMAX + 4*NMAX + MMAX).
00108 *
00109 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (5*NMAX-1)
00110 *
00111 *  IWORK   (workspace) INTEGER array, dimension (15*NMAX)
00112 *
00113 *  NOUT    (input) INTEGER
00114 *          The unit number for output.
00115 *
00116 *  =====================================================================
00117 *
00118 *     .. Parameters ..
00119       INTEGER            NTESTS
00120       PARAMETER          ( NTESTS = 18 )
00121       INTEGER            SMLSIZ
00122       PARAMETER          ( SMLSIZ = 25 )
00123       DOUBLE PRECISION   ONE, ZERO
00124       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00125       COMPLEX*16         CONE, CZERO
00126       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
00127      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
00128 *     ..
00129 *     .. Local Scalars ..
00130       CHARACTER          TRANS
00131       CHARACTER*3        PATH
00132       INTEGER            CRANK, I, IM, IN, INB, INFO, INS, IRANK,
00133      $                   ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
00134      $                   LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
00135      $                   NFAIL, NRHS, NROWS, NRUN, RANK
00136       DOUBLE PRECISION   EPS, NORMA, NORMB, RCOND
00137 *     ..
00138 *     .. Local Arrays ..
00139       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00140       DOUBLE PRECISION   RESULT( NTESTS )
00141 *     ..
00142 *     .. External Functions ..
00143       DOUBLE PRECISION   DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
00144       EXTERNAL           DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
00145 *     ..
00146 *     .. External Subroutines ..
00147       EXTERNAL           ALAERH, ALAHD, ALASVM, DAXPY, DLASRT, XLAENV,
00148      $                   ZDSCAL, ZERRLS, ZGELS, ZGELSD, ZGELSS, ZGELSX,
00149      $                   ZGELSY, ZGEMM, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
00150      $                   ZQRT16
00151 *     ..
00152 *     .. Intrinsic Functions ..
00153       INTRINSIC          DBLE, MAX, MIN, SQRT
00154 *     ..
00155 *     .. Scalars in Common ..
00156       LOGICAL            LERR, OK
00157       CHARACTER*32       SRNAMT
00158       INTEGER            INFOT, IOUNIT
00159 *     ..
00160 *     .. Common blocks ..
00161       COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
00162       COMMON             / SRNAMC / SRNAMT
00163 *     ..
00164 *     .. Data statements ..
00165       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00166 *     ..
00167 *     .. Executable Statements ..
00168 *
00169 *     Initialize constants and the random number seed.
00170 *
00171       PATH( 1: 1 ) = 'Zomplex precision'
00172       PATH( 2: 3 ) = 'LS'
00173       NRUN = 0
00174       NFAIL = 0
00175       NERRS = 0
00176       DO 10 I = 1, 4
00177          ISEED( I ) = ISEEDY( I )
00178    10 CONTINUE
00179       EPS = DLAMCH( 'Epsilon' )
00180 *
00181 *     Threshold for rank estimation
00182 *
00183       RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
00184 *
00185 *     Test the error exits
00186 *
00187       CALL XLAENV( 9, SMLSIZ )
00188       IF( TSTERR )
00189      $   CALL ZERRLS( PATH, NOUT )
00190 *
00191 *     Print the header if NM = 0 or NN = 0 and THRESH = 0.
00192 *
00193       IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
00194      $   CALL ALAHD( NOUT, PATH )
00195       INFOT = 0
00196 *
00197       DO 140 IM = 1, NM
00198          M = MVAL( IM )
00199          LDA = MAX( 1, M )
00200 *
00201          DO 130 IN = 1, NN
00202             N = NVAL( IN )
00203             MNMIN = MIN( M, N )
00204             LDB = MAX( 1, M, N )
00205 *
00206             DO 120 INS = 1, NNS
00207                NRHS = NSVAL( INS )
00208                LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
00209      $                 M*N+4*MNMIN+MAX( M, N ), 2*N+M )
00210 *
00211                DO 110 IRANK = 1, 2
00212                   DO 100 ISCALE = 1, 3
00213                      ITYPE = ( IRANK-1 )*3 + ISCALE
00214                      IF( .NOT.DOTYPE( ITYPE ) )
00215      $                  GO TO 100
00216 *
00217                      IF( IRANK.EQ.1 ) THEN
00218 *
00219 *                       Test ZGELS
00220 *
00221 *                       Generate a matrix of scaling type ISCALE
00222 *
00223                         CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
00224      $                               ISEED )
00225                         DO 40 INB = 1, NNB
00226                            NB = NBVAL( INB )
00227                            CALL XLAENV( 1, NB )
00228                            CALL XLAENV( 3, NXVAL( INB ) )
00229 *
00230                            DO 30 ITRAN = 1, 2
00231                               IF( ITRAN.EQ.1 ) THEN
00232                                  TRANS = 'N'
00233                                  NROWS = M
00234                                  NCOLS = N
00235                               ELSE
00236                                  TRANS = 'C'
00237                                  NROWS = N
00238                                  NCOLS = M
00239                               END IF
00240                               LDWORK = MAX( 1, NCOLS )
00241 *
00242 *                             Set up a consistent rhs
00243 *
00244                               IF( NCOLS.GT.0 ) THEN
00245                                  CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
00246      $                                        WORK )
00247                                  CALL ZDSCAL( NCOLS*NRHS,
00248      $                                        ONE / DBLE( NCOLS ), WORK,
00249      $                                        1 )
00250                               END IF
00251                               CALL ZGEMM( TRANS, 'No transpose', NROWS,
00252      $                                    NRHS, NCOLS, CONE, COPYA, LDA,
00253      $                                    WORK, LDWORK, CZERO, B, LDB )
00254                               CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB,
00255      $                                     COPYB, LDB )
00256 *
00257 *                             Solve LS or overdetermined system
00258 *
00259                               IF( M.GT.0 .AND. N.GT.0 ) THEN
00260                                  CALL ZLACPY( 'Full', M, N, COPYA, LDA,
00261      $                                        A, LDA )
00262                                  CALL ZLACPY( 'Full', NROWS, NRHS,
00263      $                                        COPYB, LDB, B, LDB )
00264                               END IF
00265                               SRNAMT = 'ZGELS '
00266                               CALL ZGELS( TRANS, M, N, NRHS, A, LDA, B,
00267      $                                    LDB, WORK, LWORK, INFO )
00268 *
00269                               IF( INFO.NE.0 )
00270      $                           CALL ALAERH( PATH, 'ZGELS ', INFO, 0,
00271      $                                        TRANS, M, N, NRHS, -1, NB,
00272      $                                        ITYPE, NFAIL, NERRS,
00273      $                                        NOUT )
00274 *
00275 *                             Check correctness of results
00276 *
00277                               LDWORK = MAX( 1, NROWS )
00278                               IF( NROWS.GT.0 .AND. NRHS.GT.0 )
00279      $                           CALL ZLACPY( 'Full', NROWS, NRHS,
00280      $                                        COPYB, LDB, C, LDB )
00281                               CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
00282      $                                     LDA, B, LDB, C, LDB, RWORK,
00283      $                                     RESULT( 1 ) )
00284 *
00285                               IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
00286      $                            ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
00287 *
00288 *                                Solving LS system
00289 *
00290                                  RESULT( 2 ) = ZQRT17( TRANS, 1, M, N,
00291      $                                         NRHS, COPYA, LDA, B, LDB,
00292      $                                         COPYB, LDB, C, WORK,
00293      $                                         LWORK )
00294                               ELSE
00295 *
00296 *                                Solving overdetermined system
00297 *
00298                                  RESULT( 2 ) = ZQRT14( TRANS, M, N,
00299      $                                         NRHS, COPYA, LDA, B, LDB,
00300      $                                         WORK, LWORK )
00301                               END IF
00302 *
00303 *                             Print information about the tests that
00304 *                             did not pass the threshold.
00305 *
00306                               DO 20 K = 1, 2
00307                                  IF( RESULT( K ).GE.THRESH ) THEN
00308                                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00309      $                                 CALL ALAHD( NOUT, PATH )
00310                                     WRITE( NOUT, FMT = 9999 )TRANS, M,
00311      $                                 N, NRHS, NB, ITYPE, K,
00312      $                                 RESULT( K )
00313                                     NFAIL = NFAIL + 1
00314                                  END IF
00315    20                         CONTINUE
00316                               NRUN = NRUN + 2
00317    30                      CONTINUE
00318    40                   CONTINUE
00319                      END IF
00320 *
00321 *                    Generate a matrix of scaling type ISCALE and rank
00322 *                    type IRANK.
00323 *
00324                      CALL ZQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
00325      $                            COPYB, LDB, COPYS, RANK, NORMA, NORMB,
00326      $                            ISEED, WORK, LWORK )
00327 *
00328 *                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
00329 *
00330                      DO 50 J = 1, N
00331                         IWORK( J ) = 0
00332    50                CONTINUE
00333                      LDWORK = MAX( 1, M )
00334 *
00335 *                    Test ZGELSX
00336 *
00337 *                    ZGELSX:  Compute the minimum-norm solution X
00338 *                    to min( norm( A * X - B ) )
00339 *                    using a complete orthogonal factorization.
00340 *
00341                      CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00342                      CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB )
00343 *
00344                      SRNAMT = 'ZGELSX'
00345                      CALL ZGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK,
00346      $                            RCOND, CRANK, WORK, RWORK, INFO )
00347 *
00348                      IF( INFO.NE.0 )
00349      $                  CALL ALAERH( PATH, 'ZGELSX', INFO, 0, ' ', M, N,
00350      $                               NRHS, -1, NB, ITYPE, NFAIL, NERRS,
00351      $                               NOUT )
00352 *
00353 *                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )
00354 *
00355 *                    Test 3:  Compute relative error in svd
00356 *                             workspace: M*N + 4*MIN(M,N) + MAX(M,N)
00357 *
00358                      RESULT( 3 ) = ZQRT12( CRANK, CRANK, A, LDA, COPYS,
00359      $                             WORK, LWORK, RWORK )
00360 *
00361 *                    Test 4:  Compute error in solution
00362 *                             workspace:  M*NRHS + M
00363 *
00364                      CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00365      $                            LDWORK )
00366                      CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
00367      $                            LDA, B, LDB, WORK, LDWORK, RWORK,
00368      $                            RESULT( 4 ) )
00369 *
00370 *                    Test 5:  Check norm of r'*A
00371 *                             workspace: NRHS*(M+N)
00372 *
00373                      RESULT( 5 ) = ZERO
00374                      IF( M.GT.CRANK )
00375      $                  RESULT( 5 ) = ZQRT17( 'No transpose', 1, M, N,
00376      $                                NRHS, COPYA, LDA, B, LDB, COPYB,
00377      $                                LDB, C, WORK, LWORK )
00378 *
00379 *                    Test 6:  Check if x is in the rowspace of A
00380 *                             workspace: (M+NRHS)*(N+2)
00381 *
00382                      RESULT( 6 ) = ZERO
00383 *
00384                      IF( N.GT.CRANK )
00385      $                  RESULT( 6 ) = ZQRT14( 'No transpose', M, N,
00386      $                                NRHS, COPYA, LDA, B, LDB, WORK,
00387      $                                LWORK )
00388 *
00389 *                    Print information about the tests that did not
00390 *                    pass the threshold.
00391 *
00392                      DO 60 K = 3, 6
00393                         IF( RESULT( K ).GE.THRESH ) THEN
00394                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00395      $                        CALL ALAHD( NOUT, PATH )
00396                            WRITE( NOUT, FMT = 9998 )M, N, NRHS, 0,
00397      $                        ITYPE, K, RESULT( K )
00398                            NFAIL = NFAIL + 1
00399                         END IF
00400    60                CONTINUE
00401                      NRUN = NRUN + 4
00402 *
00403 *                    Loop for testing different block sizes.
00404 *
00405                      DO 90 INB = 1, NNB
00406                         NB = NBVAL( INB )
00407                         CALL XLAENV( 1, NB )
00408                         CALL XLAENV( 3, NXVAL( INB ) )
00409 *
00410 *                       Test ZGELSY
00411 *
00412 *                       ZGELSY:  Compute the minimum-norm solution
00413 *                       X to min( norm( A * X - B ) )
00414 *                       using the rank-revealing orthogonal
00415 *                       factorization.
00416 *
00417                         CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00418                         CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
00419      $                               LDB )
00420 *
00421 *                       Initialize vector IWORK.
00422 *
00423                         DO 70 J = 1, N
00424                            IWORK( J ) = 0
00425    70                   CONTINUE
00426 *
00427 *                       Set LWLSY to the adequate value.
00428 *
00429                         LWLSY = MNMIN + MAX( 2*MNMIN, NB*( N+1 ),
00430      $                          MNMIN+NB*NRHS )
00431                         LWLSY = MAX( 1, LWLSY )
00432 *
00433                         SRNAMT = 'ZGELSY'
00434                         CALL ZGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
00435      $                               RCOND, CRANK, WORK, LWLSY, RWORK,
00436      $                               INFO )
00437                         IF( INFO.NE.0 )
00438      $                     CALL ALAERH( PATH, 'ZGELSY', INFO, 0, ' ', M,
00439      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
00440      $                                  NERRS, NOUT )
00441 *
00442 *                       workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
00443 *
00444 *                       Test 7:  Compute relative error in svd
00445 *                                workspace: M*N + 4*MIN(M,N) + MAX(M,N)
00446 *
00447                         RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA,
00448      $                                COPYS, WORK, LWORK, RWORK )
00449 *
00450 *                       Test 8:  Compute error in solution
00451 *                                workspace:  M*NRHS + M
00452 *
00453                         CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00454      $                               LDWORK )
00455                         CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
00456      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
00457      $                               RESULT( 8 ) )
00458 *
00459 *                       Test 9:  Check norm of r'*A
00460 *                                workspace: NRHS*(M+N)
00461 *
00462                         RESULT( 9 ) = ZERO
00463                         IF( M.GT.CRANK )
00464      $                     RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
00465      $                                   N, NRHS, COPYA, LDA, B, LDB,
00466      $                                   COPYB, LDB, C, WORK, LWORK )
00467 *
00468 *                       Test 10:  Check if x is in the rowspace of A
00469 *                                workspace: (M+NRHS)*(N+2)
00470 *
00471                         RESULT( 10 ) = ZERO
00472 *
00473                         IF( N.GT.CRANK )
00474      $                     RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
00475      $                                    NRHS, COPYA, LDA, B, LDB,
00476      $                                    WORK, LWORK )
00477 *
00478 *                       Test ZGELSS
00479 *
00480 *                       ZGELSS:  Compute the minimum-norm solution
00481 *                       X to min( norm( A * X - B ) )
00482 *                       using the SVD.
00483 *
00484                         CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00485                         CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
00486      $                               LDB )
00487                         SRNAMT = 'ZGELSS'
00488                         CALL ZGELSS( M, N, NRHS, A, LDA, B, LDB, S,
00489      $                               RCOND, CRANK, WORK, LWORK, RWORK,
00490      $                               INFO )
00491 *
00492                         IF( INFO.NE.0 )
00493      $                     CALL ALAERH( PATH, 'ZGELSS', INFO, 0, ' ', M,
00494      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
00495      $                                  NERRS, NOUT )
00496 *
00497 *                       workspace used: 3*min(m,n) +
00498 *                                       max(2*min(m,n),nrhs,max(m,n))
00499 *
00500 *                       Test 11:  Compute relative error in svd
00501 *
00502                         IF( RANK.GT.0 ) THEN
00503                            CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
00504                            RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
00505      $                                    DASUM( MNMIN, COPYS, 1 ) /
00506      $                                    ( EPS*DBLE( MNMIN ) )
00507                         ELSE
00508                            RESULT( 11 ) = ZERO
00509                         END IF
00510 *
00511 *                       Test 12:  Compute error in solution
00512 *
00513                         CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00514      $                               LDWORK )
00515                         CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
00516      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
00517      $                               RESULT( 12 ) )
00518 *
00519 *                       Test 13:  Check norm of r'*A
00520 *
00521                         RESULT( 13 ) = ZERO
00522                         IF( M.GT.CRANK )
00523      $                     RESULT( 13 ) = ZQRT17( 'No transpose', 1, M,
00524      $                                    N, NRHS, COPYA, LDA, B, LDB,
00525      $                                    COPYB, LDB, C, WORK, LWORK )
00526 *
00527 *                       Test 14:  Check if x is in the rowspace of A
00528 *
00529                         RESULT( 14 ) = ZERO
00530                         IF( N.GT.CRANK )
00531      $                     RESULT( 14 ) = ZQRT14( 'No transpose', M, N,
00532      $                                    NRHS, COPYA, LDA, B, LDB,
00533      $                                    WORK, LWORK )
00534 *
00535 *                       Test ZGELSD
00536 *
00537 *                       ZGELSD:  Compute the minimum-norm solution X
00538 *                       to min( norm( A * X - B ) ) using a
00539 *                       divide and conquer SVD.
00540 *
00541                         CALL XLAENV( 9, 25 )
00542 *
00543                         CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
00544                         CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
00545      $                               LDB )
00546 *
00547                         SRNAMT = 'ZGELSD'
00548                         CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S,
00549      $                               RCOND, CRANK, WORK, LWORK, RWORK,
00550      $                               IWORK, INFO )
00551                         IF( INFO.NE.0 )
00552      $                     CALL ALAERH( PATH, 'ZGELSD', INFO, 0, ' ', M,
00553      $                                  N, NRHS, -1, NB, ITYPE, NFAIL,
00554      $                                  NERRS, NOUT )
00555 *
00556 *                       Test 15:  Compute relative error in svd
00557 *
00558                         IF( RANK.GT.0 ) THEN
00559                            CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
00560                            RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
00561      $                                    DASUM( MNMIN, COPYS, 1 ) /
00562      $                                    ( EPS*DBLE( MNMIN ) )
00563                         ELSE
00564                            RESULT( 15 ) = ZERO
00565                         END IF
00566 *
00567 *                       Test 16:  Compute error in solution
00568 *
00569                         CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
00570      $                               LDWORK )
00571                         CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
00572      $                               LDA, B, LDB, WORK, LDWORK, RWORK,
00573      $                               RESULT( 16 ) )
00574 *
00575 *                       Test 17:  Check norm of r'*A
00576 *
00577                         RESULT( 17 ) = ZERO
00578                         IF( M.GT.CRANK )
00579      $                     RESULT( 17 ) = ZQRT17( 'No transpose', 1, M,
00580      $                                    N, NRHS, COPYA, LDA, B, LDB,
00581      $                                    COPYB, LDB, C, WORK, LWORK )
00582 *
00583 *                       Test 18:  Check if x is in the rowspace of A
00584 *
00585                         RESULT( 18 ) = ZERO
00586                         IF( N.GT.CRANK )
00587      $                     RESULT( 18 ) = ZQRT14( 'No transpose', M, N,
00588      $                                    NRHS, COPYA, LDA, B, LDB,
00589      $                                    WORK, LWORK )
00590 *
00591 *                       Print information about the tests that did not
00592 *                       pass the threshold.
00593 *
00594                         DO 80 K = 7, NTESTS
00595                            IF( RESULT( K ).GE.THRESH ) THEN
00596                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00597      $                           CALL ALAHD( NOUT, PATH )
00598                               WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
00599      $                           ITYPE, K, RESULT( K )
00600                               NFAIL = NFAIL + 1
00601                            END IF
00602    80                   CONTINUE
00603                         NRUN = NRUN + 12
00604 *
00605    90                CONTINUE
00606   100             CONTINUE
00607   110          CONTINUE
00608   120       CONTINUE
00609   130    CONTINUE
00610   140 CONTINUE
00611 *
00612 *     Print a summary of the results.
00613 *
00614       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00615 *
00616  9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
00617      $      ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
00618  9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
00619      $      ', type', I2, ', test(', I2, ')=', G12.5 )
00620       RETURN
00621 *
00622 *     End of ZDRVLS
00623 *
00624       END
 All Files Functions