LAPACK 3.3.0
|
00001 SUBROUTINE ZQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, 00002 $ RWORK, RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER LDA, LWORK, M, N 00010 * .. 00011 * .. Array Arguments .. 00012 DOUBLE PRECISION RESULT( * ), RWORK( * ) 00013 COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ), 00014 $ R( LDA, * ), TAU( * ), WORK( LWORK ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * ZQRT01 tests ZGEQRF, which computes the QR factorization of an m-by-n 00021 * matrix A, and partially tests ZUNGQR which forms the m-by-m 00022 * orthogonal matrix Q. 00023 * 00024 * ZQRT01 compares R with Q'*A, and checks that Q is orthogonal. 00025 * 00026 * Arguments 00027 * ========= 00028 * 00029 * M (input) INTEGER 00030 * The number of rows of the matrix A. M >= 0. 00031 * 00032 * N (input) INTEGER 00033 * The number of columns of the matrix A. N >= 0. 00034 * 00035 * A (input) COMPLEX*16 array, dimension (LDA,N) 00036 * The m-by-n matrix A. 00037 * 00038 * AF (output) COMPLEX*16 array, dimension (LDA,N) 00039 * Details of the QR factorization of A, as returned by ZGEQRF. 00040 * See ZGEQRF for further details. 00041 * 00042 * Q (output) COMPLEX*16 array, dimension (LDA,M) 00043 * The m-by-m orthogonal matrix Q. 00044 * 00045 * R (workspace) COMPLEX*16 array, dimension (LDA,max(M,N)) 00046 * 00047 * LDA (input) INTEGER 00048 * The leading dimension of the arrays A, AF, Q and R. 00049 * LDA >= max(M,N). 00050 * 00051 * TAU (output) COMPLEX*16 array, dimension (min(M,N)) 00052 * The scalar factors of the elementary reflectors, as returned 00053 * by ZGEQRF. 00054 * 00055 * WORK (workspace) COMPLEX*16 array, dimension (LWORK) 00056 * 00057 * LWORK (input) INTEGER 00058 * The dimension of the array WORK. 00059 * 00060 * RWORK (workspace) DOUBLE PRECISION array, dimension (M) 00061 * 00062 * RESULT (output) DOUBLE PRECISION array, dimension (2) 00063 * The test ratios: 00064 * RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) 00065 * RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) 00066 * 00067 * ===================================================================== 00068 * 00069 * .. Parameters .. 00070 DOUBLE PRECISION ZERO, ONE 00071 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00072 COMPLEX*16 ROGUE 00073 PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) ) 00074 * .. 00075 * .. Local Scalars .. 00076 INTEGER INFO, MINMN 00077 DOUBLE PRECISION ANORM, EPS, RESID 00078 * .. 00079 * .. External Functions .. 00080 DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY 00081 EXTERNAL DLAMCH, ZLANGE, ZLANSY 00082 * .. 00083 * .. External Subroutines .. 00084 EXTERNAL ZGEMM, ZGEQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR 00085 * .. 00086 * .. Intrinsic Functions .. 00087 INTRINSIC DBLE, DCMPLX, MAX, MIN 00088 * .. 00089 * .. Scalars in Common .. 00090 CHARACTER*32 SRNAMT 00091 * .. 00092 * .. Common blocks .. 00093 COMMON / SRNAMC / SRNAMT 00094 * .. 00095 * .. Executable Statements .. 00096 * 00097 MINMN = MIN( M, N ) 00098 EPS = DLAMCH( 'Epsilon' ) 00099 * 00100 * Copy the matrix A to the array AF. 00101 * 00102 CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA ) 00103 * 00104 * Factorize the matrix A in the array AF. 00105 * 00106 SRNAMT = 'ZGEQRF' 00107 CALL ZGEQRF( M, N, AF, LDA, TAU, WORK, LWORK, INFO ) 00108 * 00109 * Copy details of Q 00110 * 00111 CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA ) 00112 CALL ZLACPY( 'Lower', M-1, N, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA ) 00113 * 00114 * Generate the m-by-m matrix Q 00115 * 00116 SRNAMT = 'ZUNGQR' 00117 CALL ZUNGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO ) 00118 * 00119 * Copy R 00120 * 00121 CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), R, 00122 $ LDA ) 00123 CALL ZLACPY( 'Upper', M, N, AF, LDA, R, LDA ) 00124 * 00125 * Compute R - Q'*A 00126 * 00127 CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M, 00128 $ DCMPLX( -ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), R, 00129 $ LDA ) 00130 * 00131 * Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) . 00132 * 00133 ANORM = ZLANGE( '1', M, N, A, LDA, RWORK ) 00134 RESID = ZLANGE( '1', M, N, R, LDA, RWORK ) 00135 IF( ANORM.GT.ZERO ) THEN 00136 RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS 00137 ELSE 00138 RESULT( 1 ) = ZERO 00139 END IF 00140 * 00141 * Compute I - Q'*Q 00142 * 00143 CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA ) 00144 CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA, 00145 $ ONE, R, LDA ) 00146 * 00147 * Compute norm( I - Q'*Q ) / ( M * EPS ) . 00148 * 00149 RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK ) 00150 * 00151 RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS 00152 * 00153 RETURN 00154 * 00155 * End of ZQRT01 00156 * 00157 END