LAPACK 3.3.0

zchkgg.f

Go to the documentation of this file.
00001       SUBROUTINE ZCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
00002      $                   TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
00003      $                   S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1,
00004      $                   ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK,
00005      $                   RWORK, LLWORK, RESULT, INFO )
00006 *
00007 *  -- LAPACK test routine (version 3.1) --
00008 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00009 *     November 2006
00010 *
00011 *     .. Scalar Arguments ..
00012       LOGICAL            TSTDIF
00013       INTEGER            INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
00014       DOUBLE PRECISION   THRESH, THRSHN
00015 *     ..
00016 *     .. Array Arguments ..
00017       LOGICAL            DOTYPE( * ), LLWORK( * )
00018       INTEGER            ISEED( 4 ), NN( * )
00019       DOUBLE PRECISION   RESULT( 15 ), RWORK( * )
00020       COMPLEX*16         A( LDA, * ), ALPHA1( * ), ALPHA3( * ),
00021      $                   B( LDA, * ), BETA1( * ), BETA3( * ),
00022      $                   EVECTL( LDU, * ), EVECTR( LDU, * ),
00023      $                   H( LDA, * ), P1( LDA, * ), P2( LDA, * ),
00024      $                   Q( LDU, * ), S1( LDA, * ), S2( LDA, * ),
00025      $                   T( LDA, * ), U( LDU, * ), V( LDU, * ),
00026      $                   WORK( * ), Z( LDU, * )
00027 *     ..
00028 *
00029 *  Purpose
00030 *  =======
00031 *
00032 *  ZCHKGG  checks the nonsymmetric generalized eigenvalue problem
00033 *  routines.
00034 *                                 H          H        H
00035 *  ZGGHRD factors A and B as U H V  and U T V , where   means conjugate
00036 *  transpose, H is hessenberg, T is triangular and U and V are unitary.
00037 *
00038 *                                  H          H
00039 *  ZHGEQZ factors H and T as  Q S Z  and Q P Z , where P and S are upper
00040 *  triangular and Q and Z are unitary.  It also computes the generalized
00041 *  eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where
00042 *  alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j)
00043 *  is a root of the generalized eigenvalue problem
00044 *
00045 *      det( A - w(j) B ) = 0
00046 *
00047 *  and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
00048 *  problem
00049 *
00050 *      det( m(j) A - B ) = 0
00051 *
00052 *  ZTGEVC computes the matrix L of left eigenvectors and the matrix R
00053 *  of right eigenvectors for the matrix pair ( S, P ).  In the
00054 *  description below,  l and r are left and right eigenvectors
00055 *  corresponding to the generalized eigenvalues (alpha,beta).
00056 *
00057 *  When ZCHKGG is called, a number of matrix "sizes" ("n's") and a
00058 *  number of matrix "types" are specified.  For each size ("n")
00059 *  and each type of matrix, one matrix will be generated and used
00060 *  to test the nonsymmetric eigenroutines.  For each matrix, 13
00061 *  tests will be performed.  The first twelve "test ratios" should be
00062 *  small -- O(1).  They will be compared with the threshhold THRESH:
00063 *
00064 *                   H
00065 *  (1)   | A - U H V  | / ( |A| n ulp )
00066 *
00067 *                   H
00068 *  (2)   | B - U T V  | / ( |B| n ulp )
00069 *
00070 *                H
00071 *  (3)   | I - UU  | / ( n ulp )
00072 *
00073 *                H
00074 *  (4)   | I - VV  | / ( n ulp )
00075 *
00076 *                   H
00077 *  (5)   | H - Q S Z  | / ( |H| n ulp )
00078 *
00079 *                   H
00080 *  (6)   | T - Q P Z  | / ( |T| n ulp )
00081 *
00082 *                H
00083 *  (7)   | I - QQ  | / ( n ulp )
00084 *
00085 *                H
00086 *  (8)   | I - ZZ  | / ( n ulp )
00087 *
00088 *  (9)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of
00089 *                            H
00090 *        | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) )
00091 *
00092 *  (10)  max over all left eigenvalue/-vector pairs (beta/alpha,l') of
00093 *                            H
00094 *        | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) )
00095 *
00096 *        where the eigenvectors l' are the result of passing Q to
00097 *        DTGEVC and back transforming (JOB='B').
00098 *
00099 *  (11)  max over all right eigenvalue/-vector pairs (beta/alpha,r) of
00100 *
00101 *        | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
00102 *
00103 *  (12)  max over all right eigenvalue/-vector pairs (beta/alpha,r') of
00104 *
00105 *        | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )
00106 *
00107 *        where the eigenvectors r' are the result of passing Z to
00108 *        DTGEVC and back transforming (JOB='B').
00109 *
00110 *  The last three test ratios will usually be small, but there is no
00111 *  mathematical requirement that they be so.  They are therefore
00112 *  compared with THRESH only if TSTDIF is .TRUE.
00113 *
00114 *  (13)  | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )
00115 *
00116 *  (14)  | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )
00117 *
00118 *  (15)  max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
00119 *             |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp
00120 *
00121 *  In addition, the normalization of L and R are checked, and compared
00122 *  with the threshhold THRSHN.
00123 *
00124 *  Test Matrices
00125 *  ---- --------
00126 *
00127 *  The sizes of the test matrices are specified by an array
00128 *  NN(1:NSIZES); the value of each element NN(j) specifies one size.
00129 *  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
00130 *  DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
00131 *  Currently, the list of possible types is:
00132 *
00133 *  (1)  ( 0, 0 )         (a pair of zero matrices)
00134 *
00135 *  (2)  ( I, 0 )         (an identity and a zero matrix)
00136 *
00137 *  (3)  ( 0, I )         (an identity and a zero matrix)
00138 *
00139 *  (4)  ( I, I )         (a pair of identity matrices)
00140 *
00141 *          t   t
00142 *  (5)  ( J , J  )       (a pair of transposed Jordan blocks)
00143 *
00144 *                                      t                ( I   0  )
00145 *  (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
00146 *                                   ( 0   I  )          ( 0   J  )
00147 *                        and I is a k x k identity and J a (k+1)x(k+1)
00148 *                        Jordan block; k=(N-1)/2
00149 *
00150 *  (7)  ( D, I )         where D is P*D1, P is a random unitary diagonal
00151 *                        matrix (i.e., with random magnitude 1 entries
00152 *                        on the diagonal), and D1=diag( 0, 1,..., N-1 )
00153 *                        (i.e., a diagonal matrix with D1(1,1)=0,
00154 *                        D1(2,2)=1, ..., D1(N,N)=N-1.)
00155 *  (8)  ( I, D )
00156 *
00157 *  (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big
00158 *
00159 *  (10) ( small*D, big*I )
00160 *
00161 *  (11) ( big*I, small*D )
00162 *
00163 *  (12) ( small*I, big*D )
00164 *
00165 *  (13) ( big*D, big*I )
00166 *
00167 *  (14) ( small*D, small*I )
00168 *
00169 *  (15) ( D1, D2 )        where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and
00170 *                         D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and
00171 *                         P and Q are random unitary diagonal matrices.
00172 *            t   t
00173 *  (16) U ( J , J ) V     where U and V are random unitary matrices.
00174 *
00175 *  (17) U ( T1, T2 ) V    where T1 and T2 are upper triangular matrices
00176 *                         with random O(1) entries above the diagonal
00177 *                         and diagonal entries diag(T1) =
00178 *                         P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
00179 *                         Q*( 0, N-3, N-4,..., 1, 0, 0 )
00180 *
00181 *  (18) U ( T1, T2 ) V    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
00182 *                         diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
00183 *                         s = machine precision.
00184 *
00185 *  (19) U ( T1, T2 ) V    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
00186 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
00187 *
00188 *                                                         N-5
00189 *  (20) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
00190 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
00191 *
00192 *  (21) U ( T1, T2 ) V    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
00193 *                         diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
00194 *                         where r1,..., r(N-4) are random.
00195 *
00196 *  (22) U ( big*T1, small*T2 ) V   diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
00197 *                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
00198 *
00199 *  (23) U ( small*T1, big*T2 ) V   diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
00200 *                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
00201 *
00202 *  (24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
00203 *                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
00204 *
00205 *  (25) U ( big*T1, big*T2 ) V     diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
00206 *                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
00207 *
00208 *  (26) U ( T1, T2 ) V     where T1 and T2 are random upper-triangular
00209 *                          matrices.
00210 *
00211 *  Arguments
00212 *  =========
00213 *
00214 *  NSIZES  (input) INTEGER
00215 *          The number of sizes of matrices to use.  If it is zero,
00216 *          ZCHKGG does nothing.  It must be at least zero.
00217 *
00218 *  NN      (input) INTEGER array, dimension (NSIZES)
00219 *          An array containing the sizes to be used for the matrices.
00220 *          Zero values will be skipped.  The values must be at least
00221 *          zero.
00222 *
00223 *  NTYPES  (input) INTEGER
00224 *          The number of elements in DOTYPE.   If it is zero, ZCHKGG
00225 *          does nothing.  It must be at least zero.  If it is MAXTYP+1
00226 *          and NSIZES is 1, then an additional type, MAXTYP+1 is
00227 *          defined, which is to use whatever matrix is in A.  This
00228 *          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
00229 *          DOTYPE(MAXTYP+1) is .TRUE. .
00230 *
00231 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00232 *          If DOTYPE(j) is .TRUE., then for each size in NN a
00233 *          matrix of that size and of type j will be generated.
00234 *          If NTYPES is smaller than the maximum number of types
00235 *          defined (PARAMETER MAXTYP), then types NTYPES+1 through
00236 *          MAXTYP will not be generated.  If NTYPES is larger
00237 *          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
00238 *          will be ignored.
00239 *
00240 *  ISEED   (input/output) INTEGER array, dimension (4)
00241 *          On entry ISEED specifies the seed of the random number
00242 *          generator. The array elements should be between 0 and 4095;
00243 *          if not they will be reduced mod 4096.  Also, ISEED(4) must
00244 *          be odd.  The random number generator uses a linear
00245 *          congruential sequence limited to small integers, and so
00246 *          should produce machine independent random numbers. The
00247 *          values of ISEED are changed on exit, and can be used in the
00248 *          next call to ZCHKGG to continue the same random number
00249 *          sequence.
00250 *
00251 *  THRESH  (input) DOUBLE PRECISION
00252 *          A test will count as "failed" if the "error", computed as
00253 *          described above, exceeds THRESH.  Note that the error
00254 *          is scaled to be O(1), so THRESH should be a reasonably
00255 *          small multiple of 1, e.g., 10 or 100.  In particular,
00256 *          it should not depend on the precision (single vs. double)
00257 *          or the size of the matrix.  It must be at least zero.
00258 *
00259 *  TSTDIF  (input) LOGICAL
00260 *          Specifies whether test ratios 13-15 will be computed and
00261 *          compared with THRESH.
00262 *          = .FALSE.: Only test ratios 1-12 will be computed and tested.
00263 *                     Ratios 13-15 will be set to zero.
00264 *          = .TRUE.:  All the test ratios 1-15 will be computed and
00265 *                     tested.
00266 *
00267 *  THRSHN  (input) DOUBLE PRECISION
00268 *          Threshhold for reporting eigenvector normalization error.
00269 *          If the normalization of any eigenvector differs from 1 by
00270 *          more than THRSHN*ulp, then a special error message will be
00271 *          printed.  (This is handled separately from the other tests,
00272 *          since only a compiler or programming error should cause an
00273 *          error message, at least if THRSHN is at least 5--10.)
00274 *
00275 *  NOUNIT  (input) INTEGER
00276 *          The FORTRAN unit number for printing out error messages
00277 *          (e.g., if a routine returns IINFO not equal to 0.)
00278 *
00279 *  A       (input/workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00280 *          Used to hold the original A matrix.  Used as input only
00281 *          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
00282 *          DOTYPE(MAXTYP+1)=.TRUE.
00283 *
00284 *  LDA     (input) INTEGER
00285 *          The leading dimension of A, B, H, T, S1, P1, S2, and P2.
00286 *          It must be at least 1 and at least max( NN ).
00287 *
00288 *  B       (input/workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00289 *          Used to hold the original B matrix.  Used as input only
00290 *          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
00291 *          DOTYPE(MAXTYP+1)=.TRUE.
00292 *
00293 *  H       (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00294 *          The upper Hessenberg matrix computed from A by ZGGHRD.
00295 *
00296 *  T       (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00297 *          The upper triangular matrix computed from B by ZGGHRD.
00298 *
00299 *  S1      (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00300 *          The Schur (upper triangular) matrix computed from H by ZHGEQZ
00301 *          when Q and Z are also computed.
00302 *
00303 *  S2      (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00304 *          The Schur (upper triangular) matrix computed from H by ZHGEQZ
00305 *          when Q and Z are not computed.
00306 *
00307 *  P1      (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00308 *          The upper triangular matrix computed from T by ZHGEQZ
00309 *          when Q and Z are also computed.
00310 *
00311 *  P2      (workspace) COMPLEX*16 array, dimension (LDA, max(NN))
00312 *          The upper triangular matrix computed from T by ZHGEQZ
00313 *          when Q and Z are not computed.
00314 *
00315 *  U       (workspace) COMPLEX*16 array, dimension (LDU, max(NN))
00316 *          The (left) unitary matrix computed by ZGGHRD.
00317 *
00318 *  LDU     (input) INTEGER
00319 *          The leading dimension of U, V, Q, Z, EVECTL, and EVEZTR.  It
00320 *          must be at least 1 and at least max( NN ).
00321 *
00322 *  V       (workspace) COMPLEX*16 array, dimension (LDU, max(NN))
00323 *          The (right) unitary matrix computed by ZGGHRD.
00324 *
00325 *  Q       (workspace) COMPLEX*16 array, dimension (LDU, max(NN))
00326 *          The (left) unitary matrix computed by ZHGEQZ.
00327 *
00328 *  Z       (workspace) COMPLEX*16 array, dimension (LDU, max(NN))
00329 *          The (left) unitary matrix computed by ZHGEQZ.
00330 *
00331 *  ALPHA1  (workspace) COMPLEX*16 array, dimension (max(NN))
00332 *  BETA1   (workspace) COMPLEX*16 array, dimension (max(NN))
00333 *          The generalized eigenvalues of (A,B) computed by ZHGEQZ
00334 *          when Q, Z, and the full Schur matrices are computed.
00335 *
00336 *  ALPHA3  (workspace) COMPLEX*16 array, dimension (max(NN))
00337 *  BETA3   (workspace) COMPLEX*16 array, dimension (max(NN))
00338 *          The generalized eigenvalues of (A,B) computed by ZHGEQZ
00339 *          when neither Q, Z, nor the Schur matrices are computed.
00340 *
00341 *  EVECTL  (workspace) COMPLEX*16 array, dimension (LDU, max(NN))
00342 *          The (lower triangular) left eigenvector matrix for the
00343 *          matrices in S1 and P1.
00344 *
00345 *  EVEZTR  (workspace) COMPLEX*16 array, dimension (LDU, max(NN))
00346 *          The (upper triangular) right eigenvector matrix for the
00347 *          matrices in S1 and P1.
00348 *
00349 *  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
00350 *
00351 *  LWORK   (input) INTEGER
00352 *          The number of entries in WORK.  This must be at least
00353 *          max( 4*N, 2 * N**2, 1 ), for all N=NN(j).
00354 *
00355 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*max(NN))
00356 *
00357 *  LLWORK  (workspace) LOGICAL array, dimension (max(NN))
00358 *
00359 *  RESULT  (output) DOUBLE PRECISION array, dimension (15)
00360 *          The values computed by the tests described above.
00361 *          The values are currently limited to 1/ulp, to avoid
00362 *          overflow.
00363 *
00364 *  INFO    (output) INTEGER
00365 *          = 0:  successful exit.
00366 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00367 *          > 0:  A routine returned an error code.  INFO is the
00368 *                absolute value of the INFO value returned.
00369 *
00370 *  =====================================================================
00371 *
00372 *     .. Parameters ..
00373       DOUBLE PRECISION   ZERO, ONE
00374       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
00375       COMPLEX*16         CZERO, CONE
00376       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
00377      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
00378       INTEGER            MAXTYP
00379       PARAMETER          ( MAXTYP = 26 )
00380 *     ..
00381 *     .. Local Scalars ..
00382       LOGICAL            BADNN
00383       INTEGER            I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
00384      $                   LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX,
00385      $                   NTEST, NTESTT
00386       DOUBLE PRECISION   ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2,
00387      $                   ULP, ULPINV
00388       COMPLEX*16         CTEMP
00389 *     ..
00390 *     .. Local Arrays ..
00391       LOGICAL            LASIGN( MAXTYP ), LBSIGN( MAXTYP )
00392       INTEGER            IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
00393      $                   KATYPE( MAXTYP ), KAZERO( MAXTYP ),
00394      $                   KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
00395      $                   KBZERO( MAXTYP ), KCLASS( MAXTYP ),
00396      $                   KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
00397       DOUBLE PRECISION   DUMMA( 4 ), RMAGN( 0: 3 )
00398       COMPLEX*16         CDUMMA( 4 )
00399 *     ..
00400 *     .. External Functions ..
00401       DOUBLE PRECISION   DLAMCH, ZLANGE
00402       COMPLEX*16         ZLARND
00403       EXTERNAL           DLAMCH, ZLANGE, ZLARND
00404 *     ..
00405 *     .. External Subroutines ..
00406       EXTERNAL           DLABAD, DLASUM, XERBLA, ZGEQR2, ZGET51, ZGET52,
00407      $                   ZGGHRD, ZHGEQZ, ZLACPY, ZLARFG, ZLASET, ZLATM4,
00408      $                   ZTGEVC, ZUNM2R
00409 *     ..
00410 *     .. Intrinsic Functions ..
00411       INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN, SIGN
00412 *     ..
00413 *     .. Data statements ..
00414       DATA               KCLASS / 15*1, 10*2, 1*3 /
00415       DATA               KZ1 / 0, 1, 2, 1, 3, 3 /
00416       DATA               KZ2 / 0, 0, 1, 2, 1, 1 /
00417       DATA               KADD / 0, 0, 0, 0, 3, 2 /
00418       DATA               KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
00419      $                   4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
00420       DATA               KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
00421      $                   1, 1, -4, 2, -4, 8*8, 0 /
00422       DATA               KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
00423      $                   4*5, 4*3, 1 /
00424       DATA               KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
00425      $                   4*6, 4*4, 1 /
00426       DATA               KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
00427      $                   2, 1 /
00428       DATA               KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
00429      $                   2, 1 /
00430       DATA               KTRIAN / 16*0, 10*1 /
00431       DATA               LASIGN / 6*.FALSE., .TRUE., .FALSE., 2*.TRUE.,
00432      $                   2*.FALSE., 3*.TRUE., .FALSE., .TRUE.,
00433      $                   3*.FALSE., 5*.TRUE., .FALSE. /
00434       DATA               LBSIGN / 7*.FALSE., .TRUE., 2*.FALSE.,
00435      $                   2*.TRUE., 2*.FALSE., .TRUE., .FALSE., .TRUE.,
00436      $                   9*.FALSE. /
00437 *     ..
00438 *     .. Executable Statements ..
00439 *
00440 *     Check for errors
00441 *
00442       INFO = 0
00443 *
00444       BADNN = .FALSE.
00445       NMAX = 1
00446       DO 10 J = 1, NSIZES
00447          NMAX = MAX( NMAX, NN( J ) )
00448          IF( NN( J ).LT.0 )
00449      $      BADNN = .TRUE.
00450    10 CONTINUE
00451 *
00452       LWKOPT = MAX( 2*NMAX*NMAX, 4*NMAX, 1 )
00453 *
00454 *     Check for errors
00455 *
00456       IF( NSIZES.LT.0 ) THEN
00457          INFO = -1
00458       ELSE IF( BADNN ) THEN
00459          INFO = -2
00460       ELSE IF( NTYPES.LT.0 ) THEN
00461          INFO = -3
00462       ELSE IF( THRESH.LT.ZERO ) THEN
00463          INFO = -6
00464       ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
00465          INFO = -10
00466       ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
00467          INFO = -19
00468       ELSE IF( LWKOPT.GT.LWORK ) THEN
00469          INFO = -30
00470       END IF
00471 *
00472       IF( INFO.NE.0 ) THEN
00473          CALL XERBLA( 'ZCHKGG', -INFO )
00474          RETURN
00475       END IF
00476 *
00477 *     Quick return if possible
00478 *
00479       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
00480      $   RETURN
00481 *
00482       SAFMIN = DLAMCH( 'Safe minimum' )
00483       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
00484       SAFMIN = SAFMIN / ULP
00485       SAFMAX = ONE / SAFMIN
00486       CALL DLABAD( SAFMIN, SAFMAX )
00487       ULPINV = ONE / ULP
00488 *
00489 *     The values RMAGN(2:3) depend on N, see below.
00490 *
00491       RMAGN( 0 ) = ZERO
00492       RMAGN( 1 ) = ONE
00493 *
00494 *     Loop over sizes, types
00495 *
00496       NTESTT = 0
00497       NERRS = 0
00498       NMATS = 0
00499 *
00500       DO 240 JSIZE = 1, NSIZES
00501          N = NN( JSIZE )
00502          N1 = MAX( 1, N )
00503          RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
00504          RMAGN( 3 ) = SAFMIN*ULPINV*N1
00505 *
00506          IF( NSIZES.NE.1 ) THEN
00507             MTYPES = MIN( MAXTYP, NTYPES )
00508          ELSE
00509             MTYPES = MIN( MAXTYP+1, NTYPES )
00510          END IF
00511 *
00512          DO 230 JTYPE = 1, MTYPES
00513             IF( .NOT.DOTYPE( JTYPE ) )
00514      $         GO TO 230
00515             NMATS = NMATS + 1
00516             NTEST = 0
00517 *
00518 *           Save ISEED in case of an error.
00519 *
00520             DO 20 J = 1, 4
00521                IOLDSD( J ) = ISEED( J )
00522    20       CONTINUE
00523 *
00524 *           Initialize RESULT
00525 *
00526             DO 30 J = 1, 15
00527                RESULT( J ) = ZERO
00528    30       CONTINUE
00529 *
00530 *           Compute A and B
00531 *
00532 *           Description of control parameters:
00533 *
00534 *           KZLASS: =1 means w/o rotation, =2 means w/ rotation,
00535 *                   =3 means random.
00536 *           KATYPE: the "type" to be passed to ZLATM4 for computing A.
00537 *           KAZERO: the pattern of zeros on the diagonal for A:
00538 *                   =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
00539 *                   =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
00540 *                   =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of
00541 *                   non-zero entries.)
00542 *           KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
00543 *                   =2: large, =3: small.
00544 *           LASIGN: .TRUE. if the diagonal elements of A are to be
00545 *                   multiplied by a random magnitude 1 number.
00546 *           KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B.
00547 *           KTRIAN: =0: don't fill in the upper triangle, =1: do.
00548 *           KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
00549 *           RMAGN:  used to implement KAMAGN and KBMAGN.
00550 *
00551             IF( MTYPES.GT.MAXTYP )
00552      $         GO TO 110
00553             IINFO = 0
00554             IF( KCLASS( JTYPE ).LT.3 ) THEN
00555 *
00556 *              Generate A (w/o rotation)
00557 *
00558                IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
00559                   IN = 2*( ( N-1 ) / 2 ) + 1
00560                   IF( IN.NE.N )
00561      $               CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
00562                ELSE
00563                   IN = N
00564                END IF
00565                CALL ZLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
00566      $                      KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ),
00567      $                      RMAGN( KAMAGN( JTYPE ) ), ULP,
00568      $                      RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 4,
00569      $                      ISEED, A, LDA )
00570                IADD = KADD( KAZERO( JTYPE ) )
00571                IF( IADD.GT.0 .AND. IADD.LE.N )
00572      $            A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
00573 *
00574 *              Generate B (w/o rotation)
00575 *
00576                IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
00577                   IN = 2*( ( N-1 ) / 2 ) + 1
00578                   IF( IN.NE.N )
00579      $               CALL ZLASET( 'Full', N, N, CZERO, CZERO, B, LDA )
00580                ELSE
00581                   IN = N
00582                END IF
00583                CALL ZLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
00584      $                      KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ),
00585      $                      RMAGN( KBMAGN( JTYPE ) ), ONE,
00586      $                      RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 4,
00587      $                      ISEED, B, LDA )
00588                IADD = KADD( KBZERO( JTYPE ) )
00589                IF( IADD.NE.0 )
00590      $            B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
00591 *
00592                IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
00593 *
00594 *                 Include rotations
00595 *
00596 *                 Generate U, V as Householder transformations times a
00597 *                 diagonal matrix.  (Note that ZLARFG makes U(j,j) and
00598 *                 V(j,j) real.)
00599 *
00600                   DO 50 JC = 1, N - 1
00601                      DO 40 JR = JC, N
00602                         U( JR, JC ) = ZLARND( 3, ISEED )
00603                         V( JR, JC ) = ZLARND( 3, ISEED )
00604    40                CONTINUE
00605                      CALL ZLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1,
00606      $                            WORK( JC ) )
00607                      WORK( 2*N+JC ) = SIGN( ONE, DBLE( U( JC, JC ) ) )
00608                      U( JC, JC ) = CONE
00609                      CALL ZLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1,
00610      $                            WORK( N+JC ) )
00611                      WORK( 3*N+JC ) = SIGN( ONE, DBLE( V( JC, JC ) ) )
00612                      V( JC, JC ) = CONE
00613    50             CONTINUE
00614                   CTEMP = ZLARND( 3, ISEED )
00615                   U( N, N ) = CONE
00616                   WORK( N ) = CZERO
00617                   WORK( 3*N ) = CTEMP / ABS( CTEMP )
00618                   CTEMP = ZLARND( 3, ISEED )
00619                   V( N, N ) = CONE
00620                   WORK( 2*N ) = CZERO
00621                   WORK( 4*N ) = CTEMP / ABS( CTEMP )
00622 *
00623 *                 Apply the diagonal matrices
00624 *
00625                   DO 70 JC = 1, N
00626                      DO 60 JR = 1, N
00627                         A( JR, JC ) = WORK( 2*N+JR )*
00628      $                                DCONJG( WORK( 3*N+JC ) )*
00629      $                                A( JR, JC )
00630                         B( JR, JC ) = WORK( 2*N+JR )*
00631      $                                DCONJG( WORK( 3*N+JC ) )*
00632      $                                B( JR, JC )
00633    60                CONTINUE
00634    70             CONTINUE
00635                   CALL ZUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, A,
00636      $                         LDA, WORK( 2*N+1 ), IINFO )
00637                   IF( IINFO.NE.0 )
00638      $               GO TO 100
00639                   CALL ZUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ),
00640      $                         A, LDA, WORK( 2*N+1 ), IINFO )
00641                   IF( IINFO.NE.0 )
00642      $               GO TO 100
00643                   CALL ZUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, B,
00644      $                         LDA, WORK( 2*N+1 ), IINFO )
00645                   IF( IINFO.NE.0 )
00646      $               GO TO 100
00647                   CALL ZUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ),
00648      $                         B, LDA, WORK( 2*N+1 ), IINFO )
00649                   IF( IINFO.NE.0 )
00650      $               GO TO 100
00651                END IF
00652             ELSE
00653 *
00654 *              Random matrices
00655 *
00656                DO 90 JC = 1, N
00657                   DO 80 JR = 1, N
00658                      A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
00659      $                             ZLARND( 4, ISEED )
00660                      B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
00661      $                             ZLARND( 4, ISEED )
00662    80             CONTINUE
00663    90          CONTINUE
00664             END IF
00665 *
00666             ANORM = ZLANGE( '1', N, N, A, LDA, RWORK )
00667             BNORM = ZLANGE( '1', N, N, B, LDA, RWORK )
00668 *
00669   100       CONTINUE
00670 *
00671             IF( IINFO.NE.0 ) THEN
00672                WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
00673      $            IOLDSD
00674                INFO = ABS( IINFO )
00675                RETURN
00676             END IF
00677 *
00678   110       CONTINUE
00679 *
00680 *           Call ZGEQR2, ZUNM2R, and ZGGHRD to compute H, T, U, and V
00681 *
00682             CALL ZLACPY( ' ', N, N, A, LDA, H, LDA )
00683             CALL ZLACPY( ' ', N, N, B, LDA, T, LDA )
00684             NTEST = 1
00685             RESULT( 1 ) = ULPINV
00686 *
00687             CALL ZGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO )
00688             IF( IINFO.NE.0 ) THEN
00689                WRITE( NOUNIT, FMT = 9999 )'ZGEQR2', IINFO, N, JTYPE,
00690      $            IOLDSD
00691                INFO = ABS( IINFO )
00692                GO TO 210
00693             END IF
00694 *
00695             CALL ZUNM2R( 'L', 'C', N, N, N, T, LDA, WORK, H, LDA,
00696      $                   WORK( N+1 ), IINFO )
00697             IF( IINFO.NE.0 ) THEN
00698                WRITE( NOUNIT, FMT = 9999 )'ZUNM2R', IINFO, N, JTYPE,
00699      $            IOLDSD
00700                INFO = ABS( IINFO )
00701                GO TO 210
00702             END IF
00703 *
00704             CALL ZLASET( 'Full', N, N, CZERO, CONE, U, LDU )
00705             CALL ZUNM2R( 'R', 'N', N, N, N, T, LDA, WORK, U, LDU,
00706      $                   WORK( N+1 ), IINFO )
00707             IF( IINFO.NE.0 ) THEN
00708                WRITE( NOUNIT, FMT = 9999 )'ZUNM2R', IINFO, N, JTYPE,
00709      $            IOLDSD
00710                INFO = ABS( IINFO )
00711                GO TO 210
00712             END IF
00713 *
00714             CALL ZGGHRD( 'V', 'I', N, 1, N, H, LDA, T, LDA, U, LDU, V,
00715      $                   LDU, IINFO )
00716             IF( IINFO.NE.0 ) THEN
00717                WRITE( NOUNIT, FMT = 9999 )'ZGGHRD', IINFO, N, JTYPE,
00718      $            IOLDSD
00719                INFO = ABS( IINFO )
00720                GO TO 210
00721             END IF
00722             NTEST = 4
00723 *
00724 *           Do tests 1--4
00725 *
00726             CALL ZGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK,
00727      $                   RWORK, RESULT( 1 ) )
00728             CALL ZGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK,
00729      $                   RWORK, RESULT( 2 ) )
00730             CALL ZGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK,
00731      $                   RWORK, RESULT( 3 ) )
00732             CALL ZGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK,
00733      $                   RWORK, RESULT( 4 ) )
00734 *
00735 *           Call ZHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests.
00736 *
00737 *           Compute T1 and UZ
00738 *
00739 *           Eigenvalues only
00740 *
00741             CALL ZLACPY( ' ', N, N, H, LDA, S2, LDA )
00742             CALL ZLACPY( ' ', N, N, T, LDA, P2, LDA )
00743             NTEST = 5
00744             RESULT( 5 ) = ULPINV
00745 *
00746             CALL ZHGEQZ( 'E', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
00747      $                   ALPHA3, BETA3, Q, LDU, Z, LDU, WORK, LWORK,
00748      $                   RWORK, IINFO )
00749             IF( IINFO.NE.0 ) THEN
00750                WRITE( NOUNIT, FMT = 9999 )'ZHGEQZ(E)', IINFO, N, JTYPE,
00751      $            IOLDSD
00752                INFO = ABS( IINFO )
00753                GO TO 210
00754             END IF
00755 *
00756 *           Eigenvalues and Full Schur Form
00757 *
00758             CALL ZLACPY( ' ', N, N, H, LDA, S2, LDA )
00759             CALL ZLACPY( ' ', N, N, T, LDA, P2, LDA )
00760 *
00761             CALL ZHGEQZ( 'S', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
00762      $                   ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK,
00763      $                   RWORK, IINFO )
00764             IF( IINFO.NE.0 ) THEN
00765                WRITE( NOUNIT, FMT = 9999 )'ZHGEQZ(S)', IINFO, N, JTYPE,
00766      $            IOLDSD
00767                INFO = ABS( IINFO )
00768                GO TO 210
00769             END IF
00770 *
00771 *           Eigenvalues, Schur Form, and Schur Vectors
00772 *
00773             CALL ZLACPY( ' ', N, N, H, LDA, S1, LDA )
00774             CALL ZLACPY( ' ', N, N, T, LDA, P1, LDA )
00775 *
00776             CALL ZHGEQZ( 'S', 'I', 'I', N, 1, N, S1, LDA, P1, LDA,
00777      $                   ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK,
00778      $                   RWORK, IINFO )
00779             IF( IINFO.NE.0 ) THEN
00780                WRITE( NOUNIT, FMT = 9999 )'ZHGEQZ(V)', IINFO, N, JTYPE,
00781      $            IOLDSD
00782                INFO = ABS( IINFO )
00783                GO TO 210
00784             END IF
00785 *
00786             NTEST = 8
00787 *
00788 *           Do Tests 5--8
00789 *
00790             CALL ZGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK,
00791      $                   RWORK, RESULT( 5 ) )
00792             CALL ZGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK,
00793      $                   RWORK, RESULT( 6 ) )
00794             CALL ZGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK,
00795      $                   RWORK, RESULT( 7 ) )
00796             CALL ZGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK,
00797      $                   RWORK, RESULT( 8 ) )
00798 *
00799 *           Compute the Left and Right Eigenvectors of (S1,P1)
00800 *
00801 *           9: Compute the left eigenvector Matrix without
00802 *              back transforming:
00803 *
00804             NTEST = 9
00805             RESULT( 9 ) = ULPINV
00806 *
00807 *           To test "SELECT" option, compute half of the eigenvectors
00808 *           in one call, and half in another
00809 *
00810             I1 = N / 2
00811             DO 120 J = 1, I1
00812                LLWORK( J ) = .TRUE.
00813   120       CONTINUE
00814             DO 130 J = I1 + 1, N
00815                LLWORK( J ) = .FALSE.
00816   130       CONTINUE
00817 *
00818             CALL ZTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
00819      $                   LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
00820             IF( IINFO.NE.0 ) THEN
00821                WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(L,S1)', IINFO, N,
00822      $            JTYPE, IOLDSD
00823                INFO = ABS( IINFO )
00824                GO TO 210
00825             END IF
00826 *
00827             I1 = IN
00828             DO 140 J = 1, I1
00829                LLWORK( J ) = .FALSE.
00830   140       CONTINUE
00831             DO 150 J = I1 + 1, N
00832                LLWORK( J ) = .TRUE.
00833   150       CONTINUE
00834 *
00835             CALL ZTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA,
00836      $                   EVECTL( 1, I1+1 ), LDU, CDUMMA, LDU, N, IN,
00837      $                   WORK, RWORK, IINFO )
00838             IF( IINFO.NE.0 ) THEN
00839                WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(L,S2)', IINFO, N,
00840      $            JTYPE, IOLDSD
00841                INFO = ABS( IINFO )
00842                GO TO 210
00843             END IF
00844 *
00845             CALL ZGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU,
00846      $                   ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
00847             RESULT( 9 ) = DUMMA( 1 )
00848             IF( DUMMA( 2 ).GT.THRSHN ) THEN
00849                WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTGEVC(HOWMNY=S)',
00850      $            DUMMA( 2 ), N, JTYPE, IOLDSD
00851             END IF
00852 *
00853 *           10: Compute the left eigenvector Matrix with
00854 *               back transforming:
00855 *
00856             NTEST = 10
00857             RESULT( 10 ) = ULPINV
00858             CALL ZLACPY( 'F', N, N, Q, LDU, EVECTL, LDU )
00859             CALL ZTGEVC( 'L', 'B', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
00860      $                   LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
00861             IF( IINFO.NE.0 ) THEN
00862                WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(L,B)', IINFO, N,
00863      $            JTYPE, IOLDSD
00864                INFO = ABS( IINFO )
00865                GO TO 210
00866             END IF
00867 *
00868             CALL ZGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHA1,
00869      $                   BETA1, WORK, RWORK, DUMMA( 1 ) )
00870             RESULT( 10 ) = DUMMA( 1 )
00871             IF( DUMMA( 2 ).GT.THRSHN ) THEN
00872                WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTGEVC(HOWMNY=B)',
00873      $            DUMMA( 2 ), N, JTYPE, IOLDSD
00874             END IF
00875 *
00876 *           11: Compute the right eigenvector Matrix without
00877 *               back transforming:
00878 *
00879             NTEST = 11
00880             RESULT( 11 ) = ULPINV
00881 *
00882 *           To test "SELECT" option, compute half of the eigenvectors
00883 *           in one call, and half in another
00884 *
00885             I1 = N / 2
00886             DO 160 J = 1, I1
00887                LLWORK( J ) = .TRUE.
00888   160       CONTINUE
00889             DO 170 J = I1 + 1, N
00890                LLWORK( J ) = .FALSE.
00891   170       CONTINUE
00892 *
00893             CALL ZTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
00894      $                   LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
00895             IF( IINFO.NE.0 ) THEN
00896                WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(R,S1)', IINFO, N,
00897      $            JTYPE, IOLDSD
00898                INFO = ABS( IINFO )
00899                GO TO 210
00900             END IF
00901 *
00902             I1 = IN
00903             DO 180 J = 1, I1
00904                LLWORK( J ) = .FALSE.
00905   180       CONTINUE
00906             DO 190 J = I1 + 1, N
00907                LLWORK( J ) = .TRUE.
00908   190       CONTINUE
00909 *
00910             CALL ZTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
00911      $                   LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK,
00912      $                   RWORK, IINFO )
00913             IF( IINFO.NE.0 ) THEN
00914                WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(R,S2)', IINFO, N,
00915      $            JTYPE, IOLDSD
00916                INFO = ABS( IINFO )
00917                GO TO 210
00918             END IF
00919 *
00920             CALL ZGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU,
00921      $                   ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
00922             RESULT( 11 ) = DUMMA( 1 )
00923             IF( DUMMA( 2 ).GT.THRESH ) THEN
00924                WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTGEVC(HOWMNY=S)',
00925      $            DUMMA( 2 ), N, JTYPE, IOLDSD
00926             END IF
00927 *
00928 *           12: Compute the right eigenvector Matrix with
00929 *               back transforming:
00930 *
00931             NTEST = 12
00932             RESULT( 12 ) = ULPINV
00933             CALL ZLACPY( 'F', N, N, Z, LDU, EVECTR, LDU )
00934             CALL ZTGEVC( 'R', 'B', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
00935      $                   LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
00936             IF( IINFO.NE.0 ) THEN
00937                WRITE( NOUNIT, FMT = 9999 )'ZTGEVC(R,B)', IINFO, N,
00938      $            JTYPE, IOLDSD
00939                INFO = ABS( IINFO )
00940                GO TO 210
00941             END IF
00942 *
00943             CALL ZGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU,
00944      $                   ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
00945             RESULT( 12 ) = DUMMA( 1 )
00946             IF( DUMMA( 2 ).GT.THRESH ) THEN
00947                WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTGEVC(HOWMNY=B)',
00948      $            DUMMA( 2 ), N, JTYPE, IOLDSD
00949             END IF
00950 *
00951 *           Tests 13--15 are done only on request
00952 *
00953             IF( TSTDIF ) THEN
00954 *
00955 *              Do Tests 13--14
00956 *
00957                CALL ZGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU,
00958      $                      WORK, RWORK, RESULT( 13 ) )
00959                CALL ZGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU,
00960      $                      WORK, RWORK, RESULT( 14 ) )
00961 *
00962 *              Do Test 15
00963 *
00964                TEMP1 = ZERO
00965                TEMP2 = ZERO
00966                DO 200 J = 1, N
00967                   TEMP1 = MAX( TEMP1, ABS( ALPHA1( J )-ALPHA3( J ) ) )
00968                   TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) )
00969   200          CONTINUE
00970 *
00971                TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) )
00972                TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) )
00973                RESULT( 15 ) = MAX( TEMP1, TEMP2 )
00974                NTEST = 15
00975             ELSE
00976                RESULT( 13 ) = ZERO
00977                RESULT( 14 ) = ZERO
00978                RESULT( 15 ) = ZERO
00979                NTEST = 12
00980             END IF
00981 *
00982 *           End of Loop -- Check for RESULT(j) > THRESH
00983 *
00984   210       CONTINUE
00985 *
00986             NTESTT = NTESTT + NTEST
00987 *
00988 *           Print out tests which fail.
00989 *
00990             DO 220 JR = 1, NTEST
00991                IF( RESULT( JR ).GE.THRESH ) THEN
00992 *
00993 *                 If this is the first test to fail,
00994 *                 print a header to the data file.
00995 *
00996                   IF( NERRS.EQ.0 ) THEN
00997                      WRITE( NOUNIT, FMT = 9997 )'ZGG'
00998 *
00999 *                    Matrix types
01000 *
01001                      WRITE( NOUNIT, FMT = 9996 )
01002                      WRITE( NOUNIT, FMT = 9995 )
01003                      WRITE( NOUNIT, FMT = 9994 )'Unitary'
01004 *
01005 *                    Tests performed
01006 *
01007                      WRITE( NOUNIT, FMT = 9993 )'unitary', '*',
01008      $                  'conjugate transpose', ( '*', J = 1, 10 )
01009 *
01010                   END IF
01011                   NERRS = NERRS + 1
01012                   IF( RESULT( JR ).LT.10000.0D0 ) THEN
01013                      WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
01014      $                  RESULT( JR )
01015                   ELSE
01016                      WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
01017      $                  RESULT( JR )
01018                   END IF
01019                END IF
01020   220       CONTINUE
01021 *
01022   230    CONTINUE
01023   240 CONTINUE
01024 *
01025 *     Summary
01026 *
01027       CALL DLASUM( 'ZGG', NOUNIT, NERRS, NTESTT )
01028       RETURN
01029 *
01030  9999 FORMAT( ' ZCHKGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
01031      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
01032 *
01033  9998 FORMAT( ' ZCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
01034      $      'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
01035      $      'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
01036      $      ')' )
01037 *
01038  9997 FORMAT( 1X, A3, ' -- Complex Generalized eigenvalue problem' )
01039 *
01040  9996 FORMAT( ' Matrix types (see ZCHKGG for details): ' )
01041 *
01042  9995 FORMAT( ' Special Matrices:', 23X,
01043      $      '(J''=transposed Jordan block)',
01044      $      / '   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J'',J'')  ',
01045      $      '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices:  ( ',
01046      $      'D=diag(0,1,2,...) )', / '   7=(D,I)   9=(large*D, small*I',
01047      $      ')  11=(large*I, small*D)  13=(large*D, large*I)', /
01048      $      '   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D) ',
01049      $      ' 14=(small*D, small*I)', / '  15=(D, reversed D)' )
01050  9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
01051      $      / '  16=Transposed Jordan Blocks             19=geometric ',
01052      $      'alpha, beta=0,1', / '  17=arithm. alpha&beta             ',
01053      $      '      20=arithmetic alpha, beta=0,1', / '  18=clustered ',
01054      $      'alpha, beta=0,1            21=random alpha, beta=0,1',
01055      $      / ' Large & Small Matrices:', / '  22=(large, small)   ',
01056      $      '23=(small,large)    24=(small,small)    25=(large,large)',
01057      $      / '  26=random O(1) matrices.' )
01058 *
01059  9993 FORMAT( / ' Tests performed:   (H is Hessenberg, S is Schur, B, ',
01060      $      'T, P are triangular,', / 20X, 'U, V, Q, and Z are ', A,
01061      $      ', l and r are the', / 20X,
01062      $      'appropriate left and right eigenvectors, resp., a is',
01063      $      / 20X, 'alpha, b is beta, and ', A, ' means ', A, '.)',
01064      $      / ' 1 = | A - U H V', A,
01065      $      ' | / ( |A| n ulp )      2 = | B - U T V', A,
01066      $      ' | / ( |B| n ulp )', / ' 3 = | I - UU', A,
01067      $      ' | / ( n ulp )             4 = | I - VV', A,
01068      $      ' | / ( n ulp )', / ' 5 = | H - Q S Z', A,
01069      $      ' | / ( |H| n ulp )', 6X, '6 = | T - Q P Z', A,
01070      $      ' | / ( |T| n ulp )', / ' 7 = | I - QQ', A,
01071      $      ' | / ( n ulp )             8 = | I - ZZ', A,
01072      $      ' | / ( n ulp )', / ' 9 = max | ( b S - a P )', A,
01073      $      ' l | / const.  10 = max | ( b H - a T )', A,
01074      $      ' l | / const.', /
01075      $      ' 11= max | ( b S - a P ) r | / const.   12 = max | ( b H',
01076      $      ' - a T ) r | / const.', / 1X )
01077 *
01078  9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
01079      $      4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
01080  9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
01081      $      4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 )
01082 *
01083 *     End of ZCHKGG
01084 *
01085       END
 All Files Functions