LAPACK 3.3.0
|
00001 SUBROUTINE SLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, 00002 $ INCY ) 00003 * 00004 * -- LAPACK routine (version 3.2.2) -- 00005 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- 00006 * -- Jason Riedy of Univ. of California Berkeley. -- 00007 * -- June 2010 -- 00008 * 00009 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00010 * -- Univ. of California Berkeley and NAG Ltd. -- 00011 * 00012 IMPLICIT NONE 00013 * .. 00014 * .. Scalar Arguments .. 00015 REAL ALPHA, BETA 00016 INTEGER INCX, INCY, LDA, N, UPLO 00017 * .. 00018 * .. Array Arguments .. 00019 REAL A( LDA, * ), X( * ), Y( * ) 00020 * .. 00021 * 00022 * Purpose 00023 * ======= 00024 * 00025 * SLA_SYAMV performs the matrix-vector operation 00026 * 00027 * y := alpha*abs(A)*abs(x) + beta*abs(y), 00028 * 00029 * where alpha and beta are scalars, x and y are vectors and A is an 00030 * n by n symmetric matrix. 00031 * 00032 * This function is primarily used in calculating error bounds. 00033 * To protect against underflow during evaluation, components in 00034 * the resulting vector are perturbed away from zero by (N+1) 00035 * times the underflow threshold. To prevent unnecessarily large 00036 * errors for block-structure embedded in general matrices, 00037 * "symbolically" zero components are not perturbed. A zero 00038 * entry is considered "symbolic" if all multiplications involved 00039 * in computing that entry have at least one zero multiplicand. 00040 * 00041 * Arguments 00042 * ========== 00043 * 00044 * UPLO (input) INTEGER 00045 * On entry, UPLO specifies whether the upper or lower 00046 * triangular part of the array A is to be referenced as 00047 * follows: 00048 * 00049 * UPLO = BLAS_UPPER Only the upper triangular part of A 00050 * is to be referenced. 00051 * 00052 * UPLO = BLAS_LOWER Only the lower triangular part of A 00053 * is to be referenced. 00054 * 00055 * Unchanged on exit. 00056 * 00057 * N (input) INTEGER 00058 * On entry, N specifies the number of columns of the matrix A. 00059 * N must be at least zero. 00060 * Unchanged on exit. 00061 * 00062 * ALPHA (input) REAL . 00063 * On entry, ALPHA specifies the scalar alpha. 00064 * Unchanged on exit. 00065 * 00066 * A - REAL array of DIMENSION ( LDA, n ). 00067 * Before entry, the leading m by n part of the array A must 00068 * contain the matrix of coefficients. 00069 * Unchanged on exit. 00070 * 00071 * LDA (input) INTEGER 00072 * On entry, LDA specifies the first dimension of A as declared 00073 * in the calling (sub) program. LDA must be at least 00074 * max( 1, n ). 00075 * Unchanged on exit. 00076 * 00077 * X (input) REAL array, dimension 00078 * ( 1 + ( n - 1 )*abs( INCX ) ) 00079 * Before entry, the incremented array X must contain the 00080 * vector x. 00081 * Unchanged on exit. 00082 * 00083 * INCX (input) INTEGER 00084 * On entry, INCX specifies the increment for the elements of 00085 * X. INCX must not be zero. 00086 * Unchanged on exit. 00087 * 00088 * BETA (input) REAL . 00089 * On entry, BETA specifies the scalar beta. When BETA is 00090 * supplied as zero then Y need not be set on input. 00091 * Unchanged on exit. 00092 * 00093 * Y (input/output) REAL array, dimension 00094 * ( 1 + ( n - 1 )*abs( INCY ) ) 00095 * Before entry with BETA non-zero, the incremented array Y 00096 * must contain the vector y. On exit, Y is overwritten by the 00097 * updated vector y. 00098 * 00099 * INCY (input) INTEGER 00100 * On entry, INCY specifies the increment for the elements of 00101 * Y. INCY must not be zero. 00102 * Unchanged on exit. 00103 * 00104 * Further Details 00105 * =============== 00106 * 00107 * Level 2 Blas routine. 00108 * 00109 * -- Written on 22-October-1986. 00110 * Jack Dongarra, Argonne National Lab. 00111 * Jeremy Du Croz, Nag Central Office. 00112 * Sven Hammarling, Nag Central Office. 00113 * Richard Hanson, Sandia National Labs. 00114 * -- Modified for the absolute-value product, April 2006 00115 * Jason Riedy, UC Berkeley 00116 * 00117 * ===================================================================== 00118 * 00119 * .. Parameters .. 00120 REAL ONE, ZERO 00121 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00122 * .. 00123 * .. Local Scalars .. 00124 LOGICAL SYMB_ZERO 00125 REAL TEMP, SAFE1 00126 INTEGER I, INFO, IY, J, JX, KX, KY 00127 * .. 00128 * .. External Subroutines .. 00129 EXTERNAL XERBLA, SLAMCH 00130 REAL SLAMCH 00131 * .. 00132 * .. External Functions .. 00133 EXTERNAL ILAUPLO 00134 INTEGER ILAUPLO 00135 * .. 00136 * .. Intrinsic Functions .. 00137 INTRINSIC MAX, ABS, SIGN 00138 * .. 00139 * .. Executable Statements .. 00140 * 00141 * Test the input parameters. 00142 * 00143 INFO = 0 00144 IF ( UPLO.NE.ILAUPLO( 'U' ) .AND. 00145 $ UPLO.NE.ILAUPLO( 'L' ) ) THEN 00146 INFO = 1 00147 ELSE IF( N.LT.0 )THEN 00148 INFO = 2 00149 ELSE IF( LDA.LT.MAX( 1, N ) )THEN 00150 INFO = 5 00151 ELSE IF( INCX.EQ.0 )THEN 00152 INFO = 7 00153 ELSE IF( INCY.EQ.0 )THEN 00154 INFO = 10 00155 END IF 00156 IF( INFO.NE.0 )THEN 00157 CALL XERBLA( 'SSYMV ', INFO ) 00158 RETURN 00159 END IF 00160 * 00161 * Quick return if possible. 00162 * 00163 IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) 00164 $ RETURN 00165 * 00166 * Set up the start points in X and Y. 00167 * 00168 IF( INCX.GT.0 )THEN 00169 KX = 1 00170 ELSE 00171 KX = 1 - ( N - 1 )*INCX 00172 END IF 00173 IF( INCY.GT.0 )THEN 00174 KY = 1 00175 ELSE 00176 KY = 1 - ( N - 1 )*INCY 00177 END IF 00178 * 00179 * Set SAFE1 essentially to be the underflow threshold times the 00180 * number of additions in each row. 00181 * 00182 SAFE1 = SLAMCH( 'Safe minimum' ) 00183 SAFE1 = (N+1)*SAFE1 00184 * 00185 * Form y := alpha*abs(A)*abs(x) + beta*abs(y). 00186 * 00187 * The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to 00188 * the inexact flag. Still doesn't help change the iteration order 00189 * to per-column. 00190 * 00191 IY = KY 00192 IF ( INCX.EQ.1 ) THEN 00193 IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN 00194 DO I = 1, N 00195 IF ( BETA .EQ. ZERO ) THEN 00196 SYMB_ZERO = .TRUE. 00197 Y( IY ) = 0.0 00198 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN 00199 SYMB_ZERO = .TRUE. 00200 ELSE 00201 SYMB_ZERO = .FALSE. 00202 Y( IY ) = BETA * ABS( Y( IY ) ) 00203 END IF 00204 IF ( ALPHA .NE. ZERO ) THEN 00205 DO J = 1, I 00206 TEMP = ABS( A( J, I ) ) 00207 SYMB_ZERO = SYMB_ZERO .AND. 00208 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00209 00210 Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP 00211 END DO 00212 DO J = I+1, N 00213 TEMP = ABS( A( I, J ) ) 00214 SYMB_ZERO = SYMB_ZERO .AND. 00215 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00216 00217 Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP 00218 END DO 00219 END IF 00220 00221 IF ( .NOT.SYMB_ZERO ) 00222 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) 00223 00224 IY = IY + INCY 00225 END DO 00226 ELSE 00227 DO I = 1, N 00228 IF ( BETA .EQ. ZERO ) THEN 00229 SYMB_ZERO = .TRUE. 00230 Y( IY ) = 0.0 00231 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN 00232 SYMB_ZERO = .TRUE. 00233 ELSE 00234 SYMB_ZERO = .FALSE. 00235 Y( IY ) = BETA * ABS( Y( IY ) ) 00236 END IF 00237 IF ( ALPHA .NE. ZERO ) THEN 00238 DO J = 1, I 00239 TEMP = ABS( A( I, J ) ) 00240 SYMB_ZERO = SYMB_ZERO .AND. 00241 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00242 00243 Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP 00244 END DO 00245 DO J = I+1, N 00246 TEMP = ABS( A( J, I ) ) 00247 SYMB_ZERO = SYMB_ZERO .AND. 00248 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00249 00250 Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP 00251 END DO 00252 END IF 00253 00254 IF ( .NOT.SYMB_ZERO ) 00255 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) 00256 00257 IY = IY + INCY 00258 END DO 00259 END IF 00260 ELSE 00261 IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN 00262 DO I = 1, N 00263 IF ( BETA .EQ. ZERO ) THEN 00264 SYMB_ZERO = .TRUE. 00265 Y( IY ) = 0.0 00266 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN 00267 SYMB_ZERO = .TRUE. 00268 ELSE 00269 SYMB_ZERO = .FALSE. 00270 Y( IY ) = BETA * ABS( Y( IY ) ) 00271 END IF 00272 JX = KX 00273 IF ( ALPHA .NE. ZERO ) THEN 00274 DO J = 1, I 00275 TEMP = ABS( A( J, I ) ) 00276 SYMB_ZERO = SYMB_ZERO .AND. 00277 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00278 00279 Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP 00280 JX = JX + INCX 00281 END DO 00282 DO J = I+1, N 00283 TEMP = ABS( A( I, J ) ) 00284 SYMB_ZERO = SYMB_ZERO .AND. 00285 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00286 00287 Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP 00288 JX = JX + INCX 00289 END DO 00290 END IF 00291 00292 IF ( .NOT.SYMB_ZERO ) 00293 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) 00294 00295 IY = IY + INCY 00296 END DO 00297 ELSE 00298 DO I = 1, N 00299 IF ( BETA .EQ. ZERO ) THEN 00300 SYMB_ZERO = .TRUE. 00301 Y( IY ) = 0.0 00302 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN 00303 SYMB_ZERO = .TRUE. 00304 ELSE 00305 SYMB_ZERO = .FALSE. 00306 Y( IY ) = BETA * ABS( Y( IY ) ) 00307 END IF 00308 JX = KX 00309 IF ( ALPHA .NE. ZERO ) THEN 00310 DO J = 1, I 00311 TEMP = ABS( A( I, J ) ) 00312 SYMB_ZERO = SYMB_ZERO .AND. 00313 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00314 00315 Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP 00316 JX = JX + INCX 00317 END DO 00318 DO J = I+1, N 00319 TEMP = ABS( A( J, I ) ) 00320 SYMB_ZERO = SYMB_ZERO .AND. 00321 $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) 00322 00323 Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP 00324 JX = JX + INCX 00325 END DO 00326 END IF 00327 00328 IF ( .NOT.SYMB_ZERO ) 00329 $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) 00330 00331 IY = IY + INCY 00332 END DO 00333 END IF 00334 00335 END IF 00336 * 00337 RETURN 00338 * 00339 * End of SLA_SYAMV 00340 * 00341 END