LAPACK 3.3.0

cunmtr.f

Go to the documentation of this file.
00001       SUBROUTINE CUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
00002      $                   WORK, LWORK, INFO )
00003 *
00004 *  -- LAPACK routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          SIDE, TRANS, UPLO
00011       INTEGER            INFO, LDA, LDC, LWORK, M, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       COMPLEX            A( LDA, * ), C( LDC, * ), TAU( * ),
00015      $                   WORK( * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CUNMTR overwrites the general complex M-by-N matrix C with
00022 *
00023 *                  SIDE = 'L'     SIDE = 'R'
00024 *  TRANS = 'N':      Q * C          C * Q
00025 *  TRANS = 'C':      Q**H * C       C * Q**H
00026 *
00027 *  where Q is a complex unitary matrix of order nq, with nq = m if
00028 *  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
00029 *  nq-1 elementary reflectors, as returned by CHETRD:
00030 *
00031 *  if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
00032 *
00033 *  if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
00034 *
00035 *  Arguments
00036 *  =========
00037 *
00038 *  SIDE    (input) CHARACTER*1
00039 *          = 'L': apply Q or Q**H from the Left;
00040 *          = 'R': apply Q or Q**H from the Right.
00041 *
00042 *  UPLO    (input) CHARACTER*1
00043 *          = 'U': Upper triangle of A contains elementary reflectors
00044 *                 from CHETRD;
00045 *          = 'L': Lower triangle of A contains elementary reflectors
00046 *                 from CHETRD.
00047 *
00048 *  TRANS   (input) CHARACTER*1
00049 *          = 'N':  No transpose, apply Q;
00050 *          = 'C':  Conjugate transpose, apply Q**H.
00051 *
00052 *  M       (input) INTEGER
00053 *          The number of rows of the matrix C. M >= 0.
00054 *
00055 *  N       (input) INTEGER
00056 *          The number of columns of the matrix C. N >= 0.
00057 *
00058 *  A       (input) COMPLEX array, dimension
00059 *                               (LDA,M) if SIDE = 'L'
00060 *                               (LDA,N) if SIDE = 'R'
00061 *          The vectors which define the elementary reflectors, as
00062 *          returned by CHETRD.
00063 *
00064 *  LDA     (input) INTEGER
00065 *          The leading dimension of the array A.
00066 *          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
00067 *
00068 *  TAU     (input) COMPLEX array, dimension
00069 *                               (M-1) if SIDE = 'L'
00070 *                               (N-1) if SIDE = 'R'
00071 *          TAU(i) must contain the scalar factor of the elementary
00072 *          reflector H(i), as returned by CHETRD.
00073 *
00074 *  C       (input/output) COMPLEX array, dimension (LDC,N)
00075 *          On entry, the M-by-N matrix C.
00076 *          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
00077 *
00078 *  LDC     (input) INTEGER
00079 *          The leading dimension of the array C. LDC >= max(1,M).
00080 *
00081 *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
00082 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00083 *
00084 *  LWORK   (input) INTEGER
00085 *          The dimension of the array WORK.
00086 *          If SIDE = 'L', LWORK >= max(1,N);
00087 *          if SIDE = 'R', LWORK >= max(1,M).
00088 *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
00089 *          LWORK >=M*NB if SIDE = 'R', where NB is the optimal
00090 *          blocksize.
00091 *
00092 *          If LWORK = -1, then a workspace query is assumed; the routine
00093 *          only calculates the optimal size of the WORK array, returns
00094 *          this value as the first entry of the WORK array, and no error
00095 *          message related to LWORK is issued by XERBLA.
00096 *
00097 *  INFO    (output) INTEGER
00098 *          = 0:  successful exit
00099 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00100 *
00101 *  =====================================================================
00102 *
00103 *     .. Local Scalars ..
00104       LOGICAL            LEFT, LQUERY, UPPER
00105       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
00106 *     ..
00107 *     .. External Functions ..
00108       LOGICAL            LSAME
00109       INTEGER            ILAENV
00110       EXTERNAL           ILAENV, LSAME
00111 *     ..
00112 *     .. External Subroutines ..
00113       EXTERNAL           CUNMQL, CUNMQR, XERBLA
00114 *     ..
00115 *     .. Intrinsic Functions ..
00116       INTRINSIC          MAX
00117 *     ..
00118 *     .. Executable Statements ..
00119 *
00120 *     Test the input arguments
00121 *
00122       INFO = 0
00123       LEFT = LSAME( SIDE, 'L' )
00124       UPPER = LSAME( UPLO, 'U' )
00125       LQUERY = ( LWORK.EQ.-1 )
00126 *
00127 *     NQ is the order of Q and NW is the minimum dimension of WORK
00128 *
00129       IF( LEFT ) THEN
00130          NQ = M
00131          NW = N
00132       ELSE
00133          NQ = N
00134          NW = M
00135       END IF
00136       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
00137          INFO = -1
00138       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00139          INFO = -2
00140       ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
00141      $          THEN
00142          INFO = -3
00143       ELSE IF( M.LT.0 ) THEN
00144          INFO = -4
00145       ELSE IF( N.LT.0 ) THEN
00146          INFO = -5
00147       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
00148          INFO = -7
00149       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
00150          INFO = -10
00151       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
00152          INFO = -12
00153       END IF
00154 *
00155       IF( INFO.EQ.0 ) THEN
00156          IF( UPPER ) THEN
00157             IF( LEFT ) THEN
00158                NB = ILAENV( 1, 'CUNMQL', SIDE // TRANS, M-1, N, M-1,
00159      $                      -1 )
00160             ELSE
00161                NB = ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N-1, N-1,
00162      $                      -1 )
00163             END IF
00164          ELSE
00165             IF( LEFT ) THEN
00166                NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M-1, N, M-1,
00167      $                      -1 )
00168             ELSE
00169                NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N-1, N-1,
00170      $                      -1 )
00171             END IF
00172          END IF
00173          LWKOPT = MAX( 1, NW )*NB
00174          WORK( 1 ) = LWKOPT
00175       END IF
00176 *
00177       IF( INFO.NE.0 ) THEN
00178          CALL XERBLA( 'CUNMTR', -INFO )
00179          RETURN
00180       ELSE IF( LQUERY ) THEN
00181          RETURN
00182       END IF
00183 *
00184 *     Quick return if possible
00185 *
00186       IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN
00187          WORK( 1 ) = 1
00188          RETURN
00189       END IF
00190 *
00191       IF( LEFT ) THEN
00192          MI = M - 1
00193          NI = N
00194       ELSE
00195          MI = M
00196          NI = N - 1
00197       END IF
00198 *
00199       IF( UPPER ) THEN
00200 *
00201 *        Q was determined by a call to CHETRD with UPLO = 'U'
00202 *
00203          CALL CUNMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C,
00204      $                LDC, WORK, LWORK, IINFO )
00205       ELSE
00206 *
00207 *        Q was determined by a call to CHETRD with UPLO = 'L'
00208 *
00209          IF( LEFT ) THEN
00210             I1 = 2
00211             I2 = 1
00212          ELSE
00213             I1 = 1
00214             I2 = 2
00215          END IF
00216          CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
00217      $                C( I1, I2 ), LDC, WORK, LWORK, IINFO )
00218       END IF
00219       WORK( 1 ) = LWKOPT
00220       RETURN
00221 *
00222 *     End of CUNMTR
00223 *
00224       END
 All Files Functions