LAPACK 3.3.0

# cgbt02.f

Go to the documentation of this file.
```00001       SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
00002      \$                   LDB, RESID )
00003 *
00004 *  -- LAPACK test routine (version 3.1) --
00005 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          TRANS
00010       INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
00011       REAL               RESID
00012 *     ..
00013 *     .. Array Arguments ..
00014       COMPLEX            A( LDA, * ), B( LDB, * ), X( LDX, * )
00015 *     ..
00016 *
00017 *  Purpose
00018 *  =======
00019 *
00020 *  CGBT02 computes the residual for a solution of a banded system of
00021 *  equations  A*x = b  or  A'*x = b:
00022 *     RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS).
00023 *  where EPS is the machine precision.
00024 *
00025 *  Arguments
00026 *  =========
00027 *
00028 *  TRANS   (input) CHARACTER*1
00029 *          Specifies the form of the system of equations:
00030 *          = 'N':  A *x = b
00031 *          = 'T':  A'*x = b, where A' is the transpose of A
00032 *          = 'C':  A'*x = b, where A' is the transpose of A
00033 *
00034 *  M       (input) INTEGER
00035 *          The number of rows of the matrix A.  M >= 0.
00036 *
00037 *  N       (input) INTEGER
00038 *          The number of columns of the matrix A.  N >= 0.
00039 *
00040 *  KL      (input) INTEGER
00041 *          The number of subdiagonals within the band of A.  KL >= 0.
00042 *
00043 *  KU      (input) INTEGER
00044 *          The number of superdiagonals within the band of A.  KU >= 0.
00045 *
00046 *  NRHS    (input) INTEGER
00047 *          The number of columns of B.  NRHS >= 0.
00048 *
00049 *  A       (input) COMPLEX array, dimension (LDA,N)
00050 *          The original matrix A in band storage, stored in rows 1 to
00051 *          KL+KU+1.
00052 *
00053 *  LDA     (input) INTEGER
00054 *          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
00055 *
00056 *  X       (input) COMPLEX array, dimension (LDX,NRHS)
00057 *          The computed solution vectors for the system of linear
00058 *          equations.
00059 *
00060 *  LDX     (input) INTEGER
00061 *          The leading dimension of the array X.  If TRANS = 'N',
00062 *          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
00063 *
00064 *  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
00065 *          On entry, the right hand side vectors for the system of
00066 *          linear equations.
00067 *          On exit, B is overwritten with the difference B - A*X.
00068 *
00069 *  LDB     (input) INTEGER
00070 *          The leading dimension of the array B.  IF TRANS = 'N',
00071 *          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
00072 *
00073 *  RESID   (output) REAL
00074 *          The maximum over the number of right hand sides of
00075 *          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
00076 *
00077 *  =====================================================================
00078 *
00079 *     .. Parameters ..
00080       REAL               ZERO, ONE
00081       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00082       COMPLEX            CONE
00083       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
00084 *     ..
00085 *     .. Local Scalars ..
00086       INTEGER            I1, I2, J, KD, N1
00087       REAL               ANORM, BNORM, EPS, XNORM
00088 *     ..
00089 *     .. External Functions ..
00090       LOGICAL            LSAME
00091       REAL               SCASUM, SLAMCH
00092       EXTERNAL           LSAME, SCASUM, SLAMCH
00093 *     ..
00094 *     .. External Subroutines ..
00095       EXTERNAL           CGBMV
00096 *     ..
00097 *     .. Intrinsic Functions ..
00098       INTRINSIC          MAX, MIN
00099 *     ..
00100 *     .. Executable Statements ..
00101 *
00102 *     Quick return if N = 0 pr NRHS = 0
00103 *
00104       IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
00105          RESID = ZERO
00106          RETURN
00107       END IF
00108 *
00109 *     Exit with RESID = 1/EPS if ANORM = 0.
00110 *
00111       EPS = SLAMCH( 'Epsilon' )
00112       KD = KU + 1
00113       ANORM = ZERO
00114       DO 10 J = 1, N
00115          I1 = MAX( KD+1-J, 1 )
00116          I2 = MIN( KD+M-J, KL+KD )
00117          ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) )
00118    10 CONTINUE
00119       IF( ANORM.LE.ZERO ) THEN
00120          RESID = ONE / EPS
00121          RETURN
00122       END IF
00123 *
00124       IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
00125          N1 = N
00126       ELSE
00127          N1 = M
00128       END IF
00129 *
00130 *     Compute  B - A*X (or  B - A'*X )
00131 *
00132       DO 20 J = 1, NRHS
00133          CALL CGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1,
00134      \$               CONE, B( 1, J ), 1 )
00135    20 CONTINUE
00136 *
00137 *     Compute the maximum over the number of right hand sides of
00138 *        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
00139 *
00140       RESID = ZERO
00141       DO 30 J = 1, NRHS
00142          BNORM = SCASUM( N1, B( 1, J ), 1 )
00143          XNORM = SCASUM( N1, X( 1, J ), 1 )
00144          IF( XNORM.LE.ZERO ) THEN
00145             RESID = ONE / EPS
00146          ELSE
00147             RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
00148          END IF
00149    30 CONTINUE
00150 *
00151       RETURN
00152 *
00153 *     End of CGBT02
00154 *
00155       END
```