LAPACK 3.3.0
|
00001 DOUBLE COMPLEX FUNCTION ZLATM2( M, N, I, J, KL, KU, IDIST, 00002 $ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE ) 00003 * 00004 * -- LAPACK auxiliary test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * June 2010 00007 * 00008 * .. Scalar Arguments .. 00009 * 00010 INTEGER I, IDIST, IGRADE, IPVTNG, J, KL, KU, M, N 00011 DOUBLE PRECISION SPARSE 00012 * .. 00013 * 00014 * .. Array Arguments .. 00015 * 00016 INTEGER ISEED( 4 ), IWORK( * ) 00017 COMPLEX*16 D( * ), DL( * ), DR( * ) 00018 * .. 00019 * 00020 * Purpose 00021 * ======= 00022 * 00023 * ZLATM2 returns the (I,J) entry of a random matrix of dimension 00024 * (M, N) described by the other paramters. It is called by the 00025 * ZLATMR routine in order to build random test matrices. No error 00026 * checking on parameters is done, because this routine is called in 00027 * a tight loop by ZLATMR which has already checked the parameters. 00028 * 00029 * Use of ZLATM2 differs from CLATM3 in the order in which the random 00030 * number generator is called to fill in random matrix entries. 00031 * With ZLATM2, the generator is called to fill in the pivoted matrix 00032 * columnwise. With ZLATM3, the generator is called to fill in the 00033 * matrix columnwise, after which it is pivoted. Thus, ZLATM3 can 00034 * be used to construct random matrices which differ only in their 00035 * order of rows and/or columns. ZLATM2 is used to construct band 00036 * matrices while avoiding calling the random number generator for 00037 * entries outside the band (and therefore generating random numbers 00038 * 00039 * The matrix whose (I,J) entry is returned is constructed as 00040 * follows (this routine only computes one entry): 00041 * 00042 * If I is outside (1..M) or J is outside (1..N), return zero 00043 * (this is convenient for generating matrices in band format). 00044 * 00045 * Generate a matrix A with random entries of distribution IDIST. 00046 * 00047 * Set the diagonal to D. 00048 * 00049 * Grade the matrix, if desired, from the left (by DL) and/or 00050 * from the right (by DR or DL) as specified by IGRADE. 00051 * 00052 * Permute, if desired, the rows and/or columns as specified by 00053 * IPVTNG and IWORK. 00054 * 00055 * Band the matrix to have lower bandwidth KL and upper 00056 * bandwidth KU. 00057 * 00058 * Set random entries to zero as specified by SPARSE. 00059 * 00060 * Arguments 00061 * ========= 00062 * 00063 * M (input) INTEGER 00064 * Number of rows of matrix. Not modified. 00065 * 00066 * N (input) INTEGER 00067 * Number of columns of matrix. Not modified. 00068 * 00069 * I (input) INTEGER 00070 * Row of entry to be returned. Not modified. 00071 * 00072 * J (input) INTEGER 00073 * Column of entry to be returned. Not modified. 00074 * 00075 * KL (input) INTEGER 00076 * Lower bandwidth. Not modified. 00077 * 00078 * KU (input) INTEGER 00079 * Upper bandwidth. Not modified. 00080 * 00081 * IDIST (input) INTEGER 00082 * On entry, IDIST specifies the type of distribution to be 00083 * used to generate a random matrix . 00084 * 1 => real and imaginary parts each UNIFORM( 0, 1 ) 00085 * 2 => real and imaginary parts each UNIFORM( -1, 1 ) 00086 * 3 => real and imaginary parts each NORMAL( 0, 1 ) 00087 * 4 => complex number uniform in DISK( 0 , 1 ) 00088 * Not modified. 00089 * 00090 * ISEED (input/output) INTEGER array of dimension ( 4 ) 00091 * Seed for random number generator. 00092 * Changed on exit. 00093 * 00094 * D (input) COMPLEX*16 array of dimension ( MIN( I , J ) ) 00095 * Diagonal entries of matrix. Not modified. 00096 * 00097 * IGRADE (input) INTEGER 00098 * Specifies grading of matrix as follows: 00099 * 0 => no grading 00100 * 1 => matrix premultiplied by diag( DL ) 00101 * 2 => matrix postmultiplied by diag( DR ) 00102 * 3 => matrix premultiplied by diag( DL ) and 00103 * postmultiplied by diag( DR ) 00104 * 4 => matrix premultiplied by diag( DL ) and 00105 * postmultiplied by inv( diag( DL ) ) 00106 * 5 => matrix premultiplied by diag( DL ) and 00107 * postmultiplied by diag( CONJG(DL) ) 00108 * 6 => matrix premultiplied by diag( DL ) and 00109 * postmultiplied by diag( DL ) 00110 * Not modified. 00111 * 00112 * DL (input) COMPLEX*16 array ( I or J, as appropriate ) 00113 * Left scale factors for grading matrix. Not modified. 00114 * 00115 * DR (input) COMPLEX*16 array ( I or J, as appropriate ) 00116 * Right scale factors for grading matrix. Not modified. 00117 * 00118 * IPVTNG (input) INTEGER 00119 * On entry specifies pivoting permutations as follows: 00120 * 0 => none. 00121 * 1 => row pivoting. 00122 * 2 => column pivoting. 00123 * 3 => full pivoting, i.e., on both sides. 00124 * Not modified. 00125 * 00126 * IWORK (workspace) INTEGER array ( I or J, as appropriate ) 00127 * This array specifies the permutation used. The 00128 * row (or column) in position K was originally in 00129 * position IWORK( K ). 00130 * This differs from IWORK for ZLATM3. Not modified. 00131 * 00132 * SPARSE (input) DOUBLE PRECISION between 0. and 1. 00133 * On entry specifies the sparsity of the matrix 00134 * if sparse matix is to be generated. 00135 * SPARSE should lie between 0 and 1. 00136 * A uniform ( 0, 1 ) random number x is generated and 00137 * compared to SPARSE; if x is larger the matrix entry 00138 * is unchanged and if x is smaller the entry is set 00139 * to zero. Thus on the average a fraction SPARSE of the 00140 * entries will be set to zero. 00141 * Not modified. 00142 * 00143 * ===================================================================== 00144 * 00145 * .. Parameters .. 00146 * 00147 COMPLEX*16 CZERO 00148 PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ) ) 00149 DOUBLE PRECISION ZERO 00150 PARAMETER ( ZERO = 0.0D0 ) 00151 * .. 00152 * 00153 * .. Local Scalars .. 00154 * 00155 INTEGER ISUB, JSUB 00156 COMPLEX*16 CTEMP 00157 * .. 00158 * 00159 * .. External Functions .. 00160 * 00161 DOUBLE PRECISION DLARAN 00162 COMPLEX*16 ZLARND 00163 EXTERNAL DLARAN, ZLARND 00164 * .. 00165 * 00166 * .. Intrinsic Functions .. 00167 * 00168 INTRINSIC DCONJG 00169 * .. 00170 * 00171 *----------------------------------------------------------------------- 00172 * 00173 * .. Executable Statements .. 00174 * 00175 * 00176 * Check for I and J in range 00177 * 00178 IF( I.LT.1 .OR. I.GT.M .OR. J.LT.1 .OR. J.GT.N ) THEN 00179 ZLATM2 = CZERO 00180 RETURN 00181 END IF 00182 * 00183 * Check for banding 00184 * 00185 IF( J.GT.I+KU .OR. J.LT.I-KL ) THEN 00186 ZLATM2 = CZERO 00187 RETURN 00188 END IF 00189 * 00190 * Check for sparsity 00191 * 00192 IF( SPARSE.GT.ZERO ) THEN 00193 IF( DLARAN( ISEED ).LT.SPARSE ) THEN 00194 ZLATM2 = CZERO 00195 RETURN 00196 END IF 00197 END IF 00198 * 00199 * Compute subscripts depending on IPVTNG 00200 * 00201 IF( IPVTNG.EQ.0 ) THEN 00202 ISUB = I 00203 JSUB = J 00204 ELSE IF( IPVTNG.EQ.1 ) THEN 00205 ISUB = IWORK( I ) 00206 JSUB = J 00207 ELSE IF( IPVTNG.EQ.2 ) THEN 00208 ISUB = I 00209 JSUB = IWORK( J ) 00210 ELSE IF( IPVTNG.EQ.3 ) THEN 00211 ISUB = IWORK( I ) 00212 JSUB = IWORK( J ) 00213 END IF 00214 * 00215 * Compute entry and grade it according to IGRADE 00216 * 00217 IF( ISUB.EQ.JSUB ) THEN 00218 CTEMP = D( ISUB ) 00219 ELSE 00220 CTEMP = ZLARND( IDIST, ISEED ) 00221 END IF 00222 IF( IGRADE.EQ.1 ) THEN 00223 CTEMP = CTEMP*DL( ISUB ) 00224 ELSE IF( IGRADE.EQ.2 ) THEN 00225 CTEMP = CTEMP*DR( JSUB ) 00226 ELSE IF( IGRADE.EQ.3 ) THEN 00227 CTEMP = CTEMP*DL( ISUB )*DR( JSUB ) 00228 ELSE IF( IGRADE.EQ.4 .AND. ISUB.NE.JSUB ) THEN 00229 CTEMP = CTEMP*DL( ISUB ) / DL( JSUB ) 00230 ELSE IF( IGRADE.EQ.5 ) THEN 00231 CTEMP = CTEMP*DL( ISUB )*DCONJG( DL( JSUB ) ) 00232 ELSE IF( IGRADE.EQ.6 ) THEN 00233 CTEMP = CTEMP*DL( ISUB )*DL( JSUB ) 00234 END IF 00235 ZLATM2 = CTEMP 00236 RETURN 00237 * 00238 * End of ZLATM2 00239 * 00240 END