LAPACK 3.3.0

cdrvev.f

Go to the documentation of this file.
00001       SUBROUTINE CDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
00002      $                   NOUNIT, A, LDA, H, W, W1, VL, LDVL, VR, LDVR,
00003      $                   LRE, LDLRE, RESULT, WORK, NWORK, RWORK, IWORK,
00004      $                   INFO )
00005 *
00006 *  -- LAPACK test routine (version 3.1) --
00007 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00008 *     November 2006
00009 *
00010 *     .. Scalar Arguments ..
00011       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
00012      $                   NTYPES, NWORK
00013       REAL               THRESH
00014 *     ..
00015 *     .. Array Arguments ..
00016       LOGICAL            DOTYPE( * )
00017       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
00018       REAL               RESULT( 7 ), RWORK( * )
00019       COMPLEX            A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
00020      $                   VL( LDVL, * ), VR( LDVR, * ), W( * ), W1( * ),
00021      $                   WORK( * )
00022 *     ..
00023 *
00024 *  Purpose
00025 *  =======
00026 *
00027 *     CDRVEV  checks the nonsymmetric eigenvalue problem driver CGEEV.
00028 *
00029 *     When CDRVEV is called, a number of matrix "sizes" ("n's") and a
00030 *     number of matrix "types" are specified.  For each size ("n")
00031 *     and each type of matrix, one matrix will be generated and used
00032 *     to test the nonsymmetric eigenroutines.  For each matrix, 7
00033 *     tests will be performed:
00034 *
00035 *     (1)     | A * VR - VR * W | / ( n |A| ulp )
00036 *
00037 *       Here VR is the matrix of unit right eigenvectors.
00038 *       W is a diagonal matrix with diagonal entries W(j).
00039 *
00040 *     (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
00041 *
00042 *       Here VL is the matrix of unit left eigenvectors, A**H is the
00043 *       conjugate-transpose of A, and W is as above.
00044 *
00045 *     (3)     | |VR(i)| - 1 | / ulp and whether largest component real
00046 *
00047 *       VR(i) denotes the i-th column of VR.
00048 *
00049 *     (4)     | |VL(i)| - 1 | / ulp and whether largest component real
00050 *
00051 *       VL(i) denotes the i-th column of VL.
00052 *
00053 *     (5)     W(full) = W(partial)
00054 *
00055 *       W(full) denotes the eigenvalues computed when both VR and VL
00056 *       are also computed, and W(partial) denotes the eigenvalues
00057 *       computed when only W, only W and VR, or only W and VL are
00058 *       computed.
00059 *
00060 *     (6)     VR(full) = VR(partial)
00061 *
00062 *       VR(full) denotes the right eigenvectors computed when both VR
00063 *       and VL are computed, and VR(partial) denotes the result
00064 *       when only VR is computed.
00065 *
00066 *      (7)     VL(full) = VL(partial)
00067 *
00068 *       VL(full) denotes the left eigenvectors computed when both VR
00069 *       and VL are also computed, and VL(partial) denotes the result
00070 *       when only VL is computed.
00071 *
00072 *     The "sizes" are specified by an array NN(1:NSIZES); the value of
00073 *     each element NN(j) specifies one size.
00074 *     The "types" are specified by a logical array DOTYPE( 1:NTYPES );
00075 *     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
00076 *     Currently, the list of possible types is:
00077 *
00078 *     (1)  The zero matrix.
00079 *     (2)  The identity matrix.
00080 *     (3)  A (transposed) Jordan block, with 1's on the diagonal.
00081 *
00082 *     (4)  A diagonal matrix with evenly spaced entries
00083 *          1, ..., ULP  and random complex angles.
00084 *          (ULP = (first number larger than 1) - 1 )
00085 *     (5)  A diagonal matrix with geometrically spaced entries
00086 *          1, ..., ULP  and random complex angles.
00087 *     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
00088 *          and random complex angles.
00089 *
00090 *     (7)  Same as (4), but multiplied by a constant near
00091 *          the overflow threshold
00092 *     (8)  Same as (4), but multiplied by a constant near
00093 *          the underflow threshold
00094 *
00095 *     (9)  A matrix of the form  U' T U, where U is unitary and
00096 *          T has evenly spaced entries 1, ..., ULP with random complex
00097 *          angles on the diagonal and random O(1) entries in the upper
00098 *          triangle.
00099 *
00100 *     (10) A matrix of the form  U' T U, where U is unitary and
00101 *          T has geometrically spaced entries 1, ..., ULP with random
00102 *          complex angles on the diagonal and random O(1) entries in
00103 *          the upper triangle.
00104 *
00105 *     (11) A matrix of the form  U' T U, where U is unitary and
00106 *          T has "clustered" entries 1, ULP,..., ULP with random
00107 *          complex angles on the diagonal and random O(1) entries in
00108 *          the upper triangle.
00109 *
00110 *     (12) A matrix of the form  U' T U, where U is unitary and
00111 *          T has complex eigenvalues randomly chosen from
00112 *          ULP < |z| < 1   and random O(1) entries in the upper
00113 *          triangle.
00114 *
00115 *     (13) A matrix of the form  X' T X, where X has condition
00116 *          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
00117 *          with random complex angles on the diagonal and random O(1)
00118 *          entries in the upper triangle.
00119 *
00120 *     (14) A matrix of the form  X' T X, where X has condition
00121 *          SQRT( ULP ) and T has geometrically spaced entries
00122 *          1, ..., ULP with random complex angles on the diagonal
00123 *          and random O(1) entries in the upper triangle.
00124 *
00125 *     (15) A matrix of the form  X' T X, where X has condition
00126 *          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
00127 *          with random complex angles on the diagonal and random O(1)
00128 *          entries in the upper triangle.
00129 *
00130 *     (16) A matrix of the form  X' T X, where X has condition
00131 *          SQRT( ULP ) and T has complex eigenvalues randomly chosen
00132 *          from ULP < |z| < 1 and random O(1) entries in the upper
00133 *          triangle.
00134 *
00135 *     (17) Same as (16), but multiplied by a constant
00136 *          near the overflow threshold
00137 *     (18) Same as (16), but multiplied by a constant
00138 *          near the underflow threshold
00139 *
00140 *     (19) Nonsymmetric matrix with random entries chosen from |z| < 1
00141 *          If N is at least 4, all entries in first two rows and last
00142 *          row, and first column and last two columns are zero.
00143 *     (20) Same as (19), but multiplied by a constant
00144 *          near the overflow threshold
00145 *     (21) Same as (19), but multiplied by a constant
00146 *          near the underflow threshold
00147 *
00148 *  Arguments
00149 *  ==========
00150 *
00151 *  NSIZES  (input) INTEGER
00152 *          The number of sizes of matrices to use.  If it is zero,
00153 *          CDRVEV does nothing.  It must be at least zero.
00154 *
00155 *  NN      (input) INTEGER array, dimension (NSIZES)
00156 *          An array containing the sizes to be used for the matrices.
00157 *          Zero values will be skipped.  The values must be at least
00158 *          zero.
00159 *
00160 *  NTYPES  (input) INTEGER
00161 *          The number of elements in DOTYPE.   If it is zero, CDRVEV
00162 *          does nothing.  It must be at least zero.  If it is MAXTYP+1
00163 *          and NSIZES is 1, then an additional type, MAXTYP+1 is
00164 *          defined, which is to use whatever matrix is in A.  This
00165 *          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
00166 *          DOTYPE(MAXTYP+1) is .TRUE. .
00167 *
00168 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00169 *          If DOTYPE(j) is .TRUE., then for each size in NN a
00170 *          matrix of that size and of type j will be generated.
00171 *          If NTYPES is smaller than the maximum number of types
00172 *          defined (PARAMETER MAXTYP), then types NTYPES+1 through
00173 *          MAXTYP will not be generated.  If NTYPES is larger
00174 *          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
00175 *          will be ignored.
00176 *
00177 *  ISEED   (input/output) INTEGER array, dimension (4)
00178 *          On entry ISEED specifies the seed of the random number
00179 *          generator. The array elements should be between 0 and 4095;
00180 *          if not they will be reduced mod 4096.  Also, ISEED(4) must
00181 *          be odd.  The random number generator uses a linear
00182 *          congruential sequence limited to small integers, and so
00183 *          should produce machine independent random numbers. The
00184 *          values of ISEED are changed on exit, and can be used in the
00185 *          next call to CDRVEV to continue the same random number
00186 *          sequence.
00187 *
00188 *  THRESH  (input) REAL
00189 *          A test will count as "failed" if the "error", computed as
00190 *          described above, exceeds THRESH.  Note that the error
00191 *          is scaled to be O(1), so THRESH should be a reasonably
00192 *          small multiple of 1, e.g., 10 or 100.  In particular,
00193 *          it should not depend on the precision (single vs. double)
00194 *          or the size of the matrix.  It must be at least zero.
00195 *
00196 *  NOUNIT  (input) INTEGER
00197 *          The FORTRAN unit number for printing out error messages
00198 *          (e.g., if a routine returns INFO not equal to 0.)
00199 *
00200 *  A       (workspace) COMPLEX array, dimension (LDA, max(NN))
00201 *          Used to hold the matrix whose eigenvalues are to be
00202 *          computed.  On exit, A contains the last matrix actually used.
00203 *
00204 *  LDA     (input) INTEGER
00205 *          The leading dimension of A, and H. LDA must be at
00206 *          least 1 and at least max(NN).
00207 *
00208 *  H       (workspace) COMPLEX array, dimension (LDA, max(NN))
00209 *          Another copy of the test matrix A, modified by CGEEV.
00210 *
00211 *  W       (workspace) COMPLEX array, dimension (max(NN))
00212 *          The eigenvalues of A. On exit, W are the eigenvalues of
00213 *          the matrix in A.
00214 *
00215 *  W1      (workspace) COMPLEX array, dimension (max(NN))
00216 *          Like W, this array contains the eigenvalues of A,
00217 *          but those computed when CGEEV only computes a partial
00218 *          eigendecomposition, i.e. not the eigenvalues and left
00219 *          and right eigenvectors.
00220 *
00221 *  VL      (workspace) COMPLEX array, dimension (LDVL, max(NN))
00222 *          VL holds the computed left eigenvectors.
00223 *
00224 *  LDVL    (input) INTEGER
00225 *          Leading dimension of VL. Must be at least max(1,max(NN)).
00226 *
00227 *  VR      (workspace) COMPLEX array, dimension (LDVR, max(NN))
00228 *          VR holds the computed right eigenvectors.
00229 *
00230 *  LDVR    (input) INTEGER
00231 *          Leading dimension of VR. Must be at least max(1,max(NN)).
00232 *
00233 *  LRE     (workspace) COMPLEX array, dimension (LDLRE, max(NN))
00234 *          LRE holds the computed right or left eigenvectors.
00235 *
00236 *  LDLRE   (input) INTEGER
00237 *          Leading dimension of LRE. Must be at least max(1,max(NN)).
00238 *
00239 *  RESULT  (output) REAL array, dimension (7)
00240 *          The values computed by the seven tests described above.
00241 *          The values are currently limited to 1/ulp, to avoid
00242 *          overflow.
00243 *
00244 *  WORK    (workspace) COMPLEX array, dimension (NWORK)
00245 *
00246 *  NWORK   (input) INTEGER
00247 *          The number of entries in WORK.  This must be at least
00248 *          5*NN(j)+2*NN(j)**2 for all j.
00249 *
00250 *  RWORK   (workspace) REAL array, dimension (2*max(NN))
00251 *
00252 *  IWORK   (workspace) INTEGER array, dimension (max(NN))
00253 *
00254 *  INFO    (output) INTEGER
00255 *          If 0, then everything ran OK.
00256 *           -1: NSIZES < 0
00257 *           -2: Some NN(j) < 0
00258 *           -3: NTYPES < 0
00259 *           -6: THRESH < 0
00260 *           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
00261 *          -14: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ).
00262 *          -16: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ).
00263 *          -18: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ).
00264 *          -21: NWORK too small.
00265 *          If  CLATMR, CLATMS, CLATME or CGEEV returns an error code,
00266 *              the absolute value of it is returned.
00267 *
00268 *-----------------------------------------------------------------------
00269 *
00270 *     Some Local Variables and Parameters:
00271 *     ---- ----- --------- --- ----------
00272 *
00273 *     ZERO, ONE       Real 0 and 1.
00274 *     MAXTYP          The number of types defined.
00275 *     NMAX            Largest value in NN.
00276 *     NERRS           The number of tests which have exceeded THRESH
00277 *     COND, CONDS,
00278 *     IMODE           Values to be passed to the matrix generators.
00279 *     ANORM           Norm of A; passed to matrix generators.
00280 *
00281 *     OVFL, UNFL      Overflow and underflow thresholds.
00282 *     ULP, ULPINV     Finest relative precision and its inverse.
00283 *     RTULP, RTULPI   Square roots of the previous 4 values.
00284 *
00285 *             The following four arrays decode JTYPE:
00286 *     KTYPE(j)        The general type (1-10) for type "j".
00287 *     KMODE(j)        The MODE value to be passed to the matrix
00288 *                     generator for type "j".
00289 *     KMAGN(j)        The order of magnitude ( O(1),
00290 *                     O(overflow^(1/2) ), O(underflow^(1/2) )
00291 *     KCONDS(j)       Selectw whether CONDS is to be 1 or
00292 *                     1/sqrt(ulp).  (0 means irrelevant.)
00293 *
00294 *  =====================================================================
00295 *
00296 *     .. Parameters ..
00297       COMPLEX            CZERO
00298       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
00299       COMPLEX            CONE
00300       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
00301       REAL               ZERO, ONE
00302       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00303       REAL               TWO
00304       PARAMETER          ( TWO = 2.0E+0 )
00305       INTEGER            MAXTYP
00306       PARAMETER          ( MAXTYP = 21 )
00307 *     ..
00308 *     .. Local Scalars ..
00309       LOGICAL            BADNN
00310       CHARACTER*3        PATH
00311       INTEGER            IINFO, IMODE, ITYPE, IWK, J, JCOL, JJ, JSIZE,
00312      $                   JTYPE, MTYPES, N, NERRS, NFAIL, NMAX,
00313      $                   NNWORK, NTEST, NTESTF, NTESTT
00314       REAL               ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TNRM,
00315      $                   ULP, ULPINV, UNFL, VMX, VRMX, VTST
00316 *     ..
00317 *     .. Local Arrays ..
00318       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
00319      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
00320      $                   KTYPE( MAXTYP )
00321       REAL               RES( 2 )
00322       COMPLEX            DUM( 1 )
00323 *     ..
00324 *     .. External Functions ..
00325       REAL               SCNRM2, SLAMCH
00326       EXTERNAL           SCNRM2, SLAMCH
00327 *     ..
00328 *     .. External Subroutines ..
00329       EXTERNAL           CGEEV, CGET22, CLACPY, CLATME, CLATMR, CLATMS,
00330      $                   CLASET, SLABAD, SLASUM, XERBLA
00331 *     ..
00332 *     .. Intrinsic Functions ..
00333       INTRINSIC          ABS, AIMAG, CMPLX, MAX, MIN, REAL, SQRT
00334 *     ..
00335 *     .. Data statements ..
00336       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
00337       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
00338      $                   3, 1, 2, 3 /
00339       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
00340      $                   1, 5, 5, 5, 4, 3, 1 /
00341       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
00342 *     ..
00343 *     .. Executable Statements ..
00344 *
00345       PATH( 1: 1 ) = 'Complex precision'
00346       PATH( 2: 3 ) = 'EV'
00347 *
00348 *     Check for errors
00349 *
00350       NTESTT = 0
00351       NTESTF = 0
00352       INFO = 0
00353 *
00354 *     Important constants
00355 *
00356       BADNN = .FALSE.
00357       NMAX = 0
00358       DO 10 J = 1, NSIZES
00359          NMAX = MAX( NMAX, NN( J ) )
00360          IF( NN( J ).LT.0 )
00361      $      BADNN = .TRUE.
00362    10 CONTINUE
00363 *
00364 *     Check for errors
00365 *
00366       IF( NSIZES.LT.0 ) THEN
00367          INFO = -1
00368       ELSE IF( BADNN ) THEN
00369          INFO = -2
00370       ELSE IF( NTYPES.LT.0 ) THEN
00371          INFO = -3
00372       ELSE IF( THRESH.LT.ZERO ) THEN
00373          INFO = -6
00374       ELSE IF( NOUNIT.LE.0 ) THEN
00375          INFO = -7
00376       ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
00377          INFO = -9
00378       ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
00379          INFO = -14
00380       ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
00381          INFO = -16
00382       ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
00383          INFO = -28
00384       ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
00385          INFO = -21
00386       END IF
00387 *
00388       IF( INFO.NE.0 ) THEN
00389          CALL XERBLA( 'CDRVEV', -INFO )
00390          RETURN
00391       END IF
00392 *
00393 *     Quick return if nothing to do
00394 *
00395       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
00396      $   RETURN
00397 *
00398 *     More Important constants
00399 *
00400       UNFL = SLAMCH( 'Safe minimum' )
00401       OVFL = ONE / UNFL
00402       CALL SLABAD( UNFL, OVFL )
00403       ULP = SLAMCH( 'Precision' )
00404       ULPINV = ONE / ULP
00405       RTULP = SQRT( ULP )
00406       RTULPI = ONE / RTULP
00407 *
00408 *     Loop over sizes, types
00409 *
00410       NERRS = 0
00411 *
00412       DO 270 JSIZE = 1, NSIZES
00413          N = NN( JSIZE )
00414          IF( NSIZES.NE.1 ) THEN
00415             MTYPES = MIN( MAXTYP, NTYPES )
00416          ELSE
00417             MTYPES = MIN( MAXTYP+1, NTYPES )
00418          END IF
00419 *
00420          DO 260 JTYPE = 1, MTYPES
00421             IF( .NOT.DOTYPE( JTYPE ) )
00422      $         GO TO 260
00423 *
00424 *           Save ISEED in case of an error.
00425 *
00426             DO 20 J = 1, 4
00427                IOLDSD( J ) = ISEED( J )
00428    20       CONTINUE
00429 *
00430 *           Compute "A"
00431 *
00432 *           Control parameters:
00433 *
00434 *           KMAGN  KCONDS  KMODE        KTYPE
00435 *       =1  O(1)   1       clustered 1  zero
00436 *       =2  large  large   clustered 2  identity
00437 *       =3  small          exponential  Jordan
00438 *       =4                 arithmetic   diagonal, (w/ eigenvalues)
00439 *       =5                 random log   symmetric, w/ eigenvalues
00440 *       =6                 random       general, w/ eigenvalues
00441 *       =7                              random diagonal
00442 *       =8                              random symmetric
00443 *       =9                              random general
00444 *       =10                             random triangular
00445 *
00446             IF( MTYPES.GT.MAXTYP )
00447      $         GO TO 90
00448 *
00449             ITYPE = KTYPE( JTYPE )
00450             IMODE = KMODE( JTYPE )
00451 *
00452 *           Compute norm
00453 *
00454             GO TO ( 30, 40, 50 )KMAGN( JTYPE )
00455 *
00456    30       CONTINUE
00457             ANORM = ONE
00458             GO TO 60
00459 *
00460    40       CONTINUE
00461             ANORM = OVFL*ULP
00462             GO TO 60
00463 *
00464    50       CONTINUE
00465             ANORM = UNFL*ULPINV
00466             GO TO 60
00467 *
00468    60       CONTINUE
00469 *
00470             CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
00471             IINFO = 0
00472             COND = ULPINV
00473 *
00474 *           Special Matrices -- Identity & Jordan block
00475 *
00476 *              Zero
00477 *
00478             IF( ITYPE.EQ.1 ) THEN
00479                IINFO = 0
00480 *
00481             ELSE IF( ITYPE.EQ.2 ) THEN
00482 *
00483 *              Identity
00484 *
00485                DO 70 JCOL = 1, N
00486                   A( JCOL, JCOL ) = CMPLX( ANORM )
00487    70          CONTINUE
00488 *
00489             ELSE IF( ITYPE.EQ.3 ) THEN
00490 *
00491 *              Jordan Block
00492 *
00493                DO 80 JCOL = 1, N
00494                   A( JCOL, JCOL ) = CMPLX( ANORM )
00495                   IF( JCOL.GT.1 )
00496      $               A( JCOL, JCOL-1 ) = CONE
00497    80          CONTINUE
00498 *
00499             ELSE IF( ITYPE.EQ.4 ) THEN
00500 *
00501 *              Diagonal Matrix, [Eigen]values Specified
00502 *
00503                CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
00504      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
00505      $                      IINFO )
00506 *
00507             ELSE IF( ITYPE.EQ.5 ) THEN
00508 *
00509 *              Hermitian, eigenvalues specified
00510 *
00511                CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
00512      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
00513      $                      IINFO )
00514 *
00515             ELSE IF( ITYPE.EQ.6 ) THEN
00516 *
00517 *              General, eigenvalues specified
00518 *
00519                IF( KCONDS( JTYPE ).EQ.1 ) THEN
00520                   CONDS = ONE
00521                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
00522                   CONDS = RTULPI
00523                ELSE
00524                   CONDS = ZERO
00525                END IF
00526 *
00527                CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE,
00528      $                      ' ', 'T', 'T', 'T', RWORK, 4, CONDS, N, N,
00529      $                      ANORM, A, LDA, WORK( 2*N+1 ), IINFO )
00530 *
00531             ELSE IF( ITYPE.EQ.7 ) THEN
00532 *
00533 *              Diagonal, random eigenvalues
00534 *
00535                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
00536      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00537      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
00538      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00539 *
00540             ELSE IF( ITYPE.EQ.8 ) THEN
00541 *
00542 *              Symmetric, random eigenvalues
00543 *
00544                CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
00545      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00546      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
00547      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00548 *
00549             ELSE IF( ITYPE.EQ.9 ) THEN
00550 *
00551 *              General, random eigenvalues
00552 *
00553                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
00554      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00555      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
00556      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00557                IF( N.GE.4 ) THEN
00558                   CALL CLASET( 'Full', 2, N, CZERO, CZERO, A, LDA )
00559                   CALL CLASET( 'Full', N-3, 1, CZERO, CZERO, A( 3, 1 ),
00560      $                         LDA )
00561                   CALL CLASET( 'Full', N-3, 2, CZERO, CZERO,
00562      $                         A( 3, N-1 ), LDA )
00563                   CALL CLASET( 'Full', 1, N, CZERO, CZERO, A( N, 1 ),
00564      $                         LDA )
00565                END IF
00566 *
00567             ELSE IF( ITYPE.EQ.10 ) THEN
00568 *
00569 *              Triangular, random eigenvalues
00570 *
00571                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
00572      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00573      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
00574      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00575 *
00576             ELSE
00577 *
00578                IINFO = 1
00579             END IF
00580 *
00581             IF( IINFO.NE.0 ) THEN
00582                WRITE( NOUNIT, FMT = 9993 )'Generator', IINFO, N, JTYPE,
00583      $            IOLDSD
00584                INFO = ABS( IINFO )
00585                RETURN
00586             END IF
00587 *
00588    90       CONTINUE
00589 *
00590 *           Test for minimal and generous workspace
00591 *
00592             DO 250 IWK = 1, 2
00593                IF( IWK.EQ.1 ) THEN
00594                   NNWORK = 2*N
00595                ELSE
00596                   NNWORK = 5*N + 2*N**2
00597                END IF
00598                NNWORK = MAX( NNWORK, 1 )
00599 *
00600 *              Initialize RESULT
00601 *
00602                DO 100 J = 1, 7
00603                   RESULT( J ) = -ONE
00604   100          CONTINUE
00605 *
00606 *              Compute eigenvalues and eigenvectors, and test them
00607 *
00608                CALL CLACPY( 'F', N, N, A, LDA, H, LDA )
00609                CALL CGEEV( 'V', 'V', N, H, LDA, W, VL, LDVL, VR, LDVR,
00610      $                     WORK, NNWORK, RWORK, IINFO )
00611                IF( IINFO.NE.0 ) THEN
00612                   RESULT( 1 ) = ULPINV
00613                   WRITE( NOUNIT, FMT = 9993 )'CGEEV1', IINFO, N, JTYPE,
00614      $               IOLDSD
00615                   INFO = ABS( IINFO )
00616                   GO TO 220
00617                END IF
00618 *
00619 *              Do Test (1)
00620 *
00621                CALL CGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, W, WORK,
00622      $                      RWORK, RES )
00623                RESULT( 1 ) = RES( 1 )
00624 *
00625 *              Do Test (2)
00626 *
00627                CALL CGET22( 'C', 'N', 'C', N, A, LDA, VL, LDVL, W, WORK,
00628      $                      RWORK, RES )
00629                RESULT( 2 ) = RES( 1 )
00630 *
00631 *              Do Test (3)
00632 *
00633                DO 120 J = 1, N
00634                   TNRM = SCNRM2( N, VR( 1, J ), 1 )
00635                   RESULT( 3 ) = MAX( RESULT( 3 ),
00636      $                          MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
00637                   VMX = ZERO
00638                   VRMX = ZERO
00639                   DO 110 JJ = 1, N
00640                      VTST = ABS( VR( JJ, J ) )
00641                      IF( VTST.GT.VMX )
00642      $                  VMX = VTST
00643                      IF( AIMAG( VR( JJ, J ) ).EQ.ZERO .AND.
00644      $                   ABS( REAL( VR( JJ, J ) ) ).GT.VRMX )
00645      $                   VRMX = ABS( REAL( VR( JJ, J ) ) )
00646   110             CONTINUE
00647                   IF( VRMX / VMX.LT.ONE-TWO*ULP )
00648      $               RESULT( 3 ) = ULPINV
00649   120          CONTINUE
00650 *
00651 *              Do Test (4)
00652 *
00653                DO 140 J = 1, N
00654                   TNRM = SCNRM2( N, VL( 1, J ), 1 )
00655                   RESULT( 4 ) = MAX( RESULT( 4 ),
00656      $                          MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
00657                   VMX = ZERO
00658                   VRMX = ZERO
00659                   DO 130 JJ = 1, N
00660                      VTST = ABS( VL( JJ, J ) )
00661                      IF( VTST.GT.VMX )
00662      $                  VMX = VTST
00663                      IF( AIMAG( VL( JJ, J ) ).EQ.ZERO .AND.
00664      $                   ABS( REAL( VL( JJ, J ) ) ).GT.VRMX )
00665      $                   VRMX = ABS( REAL( VL( JJ, J ) ) )
00666   130             CONTINUE
00667                   IF( VRMX / VMX.LT.ONE-TWO*ULP )
00668      $               RESULT( 4 ) = ULPINV
00669   140          CONTINUE
00670 *
00671 *              Compute eigenvalues only, and test them
00672 *
00673                CALL CLACPY( 'F', N, N, A, LDA, H, LDA )
00674                CALL CGEEV( 'N', 'N', N, H, LDA, W1, DUM, 1, DUM, 1,
00675      $                     WORK, NNWORK, RWORK, IINFO )
00676                IF( IINFO.NE.0 ) THEN
00677                   RESULT( 1 ) = ULPINV
00678                   WRITE( NOUNIT, FMT = 9993 )'CGEEV2', IINFO, N, JTYPE,
00679      $               IOLDSD
00680                   INFO = ABS( IINFO )
00681                   GO TO 220
00682                END IF
00683 *
00684 *              Do Test (5)
00685 *
00686                DO 150 J = 1, N
00687                   IF( W( J ).NE.W1( J ) )
00688      $               RESULT( 5 ) = ULPINV
00689   150          CONTINUE
00690 *
00691 *              Compute eigenvalues and right eigenvectors, and test them
00692 *
00693                CALL CLACPY( 'F', N, N, A, LDA, H, LDA )
00694                CALL CGEEV( 'N', 'V', N, H, LDA, W1, DUM, 1, LRE, LDLRE,
00695      $                     WORK, NNWORK, RWORK, IINFO )
00696                IF( IINFO.NE.0 ) THEN
00697                   RESULT( 1 ) = ULPINV
00698                   WRITE( NOUNIT, FMT = 9993 )'CGEEV3', IINFO, N, JTYPE,
00699      $               IOLDSD
00700                   INFO = ABS( IINFO )
00701                   GO TO 220
00702                END IF
00703 *
00704 *              Do Test (5) again
00705 *
00706                DO 160 J = 1, N
00707                   IF( W( J ).NE.W1( J ) )
00708      $               RESULT( 5 ) = ULPINV
00709   160          CONTINUE
00710 *
00711 *              Do Test (6)
00712 *
00713                DO 180 J = 1, N
00714                   DO 170 JJ = 1, N
00715                      IF( VR( J, JJ ).NE.LRE( J, JJ ) )
00716      $                  RESULT( 6 ) = ULPINV
00717   170             CONTINUE
00718   180          CONTINUE
00719 *
00720 *              Compute eigenvalues and left eigenvectors, and test them
00721 *
00722                CALL CLACPY( 'F', N, N, A, LDA, H, LDA )
00723                CALL CGEEV( 'V', 'N', N, H, LDA, W1, LRE, LDLRE, DUM, 1,
00724      $                     WORK, NNWORK, RWORK, IINFO )
00725                IF( IINFO.NE.0 ) THEN
00726                   RESULT( 1 ) = ULPINV
00727                   WRITE( NOUNIT, FMT = 9993 )'CGEEV4', IINFO, N, JTYPE,
00728      $               IOLDSD
00729                   INFO = ABS( IINFO )
00730                   GO TO 220
00731                END IF
00732 *
00733 *              Do Test (5) again
00734 *
00735                DO 190 J = 1, N
00736                   IF( W( J ).NE.W1( J ) )
00737      $               RESULT( 5 ) = ULPINV
00738   190          CONTINUE
00739 *
00740 *              Do Test (7)
00741 *
00742                DO 210 J = 1, N
00743                   DO 200 JJ = 1, N
00744                      IF( VL( J, JJ ).NE.LRE( J, JJ ) )
00745      $                  RESULT( 7 ) = ULPINV
00746   200             CONTINUE
00747   210          CONTINUE
00748 *
00749 *              End of Loop -- Check for RESULT(j) > THRESH
00750 *
00751   220          CONTINUE
00752 *
00753                NTEST = 0
00754                NFAIL = 0
00755                DO 230 J = 1, 7
00756                   IF( RESULT( J ).GE.ZERO )
00757      $               NTEST = NTEST + 1
00758                   IF( RESULT( J ).GE.THRESH )
00759      $               NFAIL = NFAIL + 1
00760   230          CONTINUE
00761 *
00762                IF( NFAIL.GT.0 )
00763      $            NTESTF = NTESTF + 1
00764                IF( NTESTF.EQ.1 ) THEN
00765                   WRITE( NOUNIT, FMT = 9999 )PATH
00766                   WRITE( NOUNIT, FMT = 9998 )
00767                   WRITE( NOUNIT, FMT = 9997 )
00768                   WRITE( NOUNIT, FMT = 9996 )
00769                   WRITE( NOUNIT, FMT = 9995 )THRESH
00770                   NTESTF = 2
00771                END IF
00772 *
00773                DO 240 J = 1, 7
00774                   IF( RESULT( J ).GE.THRESH ) THEN
00775                      WRITE( NOUNIT, FMT = 9994 )N, IWK, IOLDSD, JTYPE,
00776      $                  J, RESULT( J )
00777                   END IF
00778   240          CONTINUE
00779 *
00780                NERRS = NERRS + NFAIL
00781                NTESTT = NTESTT + NTEST
00782 *
00783   250       CONTINUE
00784   260    CONTINUE
00785   270 CONTINUE
00786 *
00787 *     Summary
00788 *
00789       CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
00790 *
00791  9999 FORMAT( / 1X, A3, ' -- Complex Eigenvalue-Eigenvector ',
00792      $      'Decomposition Driver', /
00793      $      ' Matrix types (see CDRVEV for details): ' )
00794 *
00795  9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
00796      $      '           ', '  5=Diagonal: geometr. spaced entries.',
00797      $      / '  2=Identity matrix.                    ', '  6=Diagona',
00798      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
00799      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
00800      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
00801      $      'mall, evenly spaced.' )
00802  9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
00803      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
00804      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
00805      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
00806      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
00807      $      'lex ', A6, / ' 12=Well-cond., random complex ', A6, '   ',
00808      $      ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi',
00809      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
00810      $      ' complx ', A4 )
00811  9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
00812      $      'with small random entries.', / ' 20=Matrix with large ran',
00813      $      'dom entries.   ', / )
00814  9995 FORMAT( ' Tests performed with test threshold =', F8.2,
00815      $      / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
00816      $      / ' 2 = | conj-trans(A) VL - VL conj-trans(W) | /',
00817      $      ' ( n |A| ulp ) ', / ' 3 = | |VR(i)| - 1 | / ulp ',
00818      $      / ' 4 = | |VL(i)| - 1 | / ulp ',
00819      $      / ' 5 = 0 if W same no matter if VR or VL computed,',
00820      $      ' 1/ulp otherwise', /
00821      $      ' 6 = 0 if VR same no matter if VL computed,',
00822      $      '  1/ulp otherwise', /
00823      $      ' 7 = 0 if VL same no matter if VR computed,',
00824      $      '  1/ulp otherwise', / )
00825  9994 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
00826      $      ' type ', I2, ', test(', I2, ')=', G10.3 )
00827  9993 FORMAT( ' CDRVEV: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
00828      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
00829 *
00830       RETURN
00831 *
00832 *     End of CDRVEV
00833 *
00834       END
 All Files Functions