LAPACK 3.3.0

sgerfs.f

Go to the documentation of this file.
00001       SUBROUTINE SGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
00002      $                   X, LDX, FERR, BERR, WORK, IWORK, INFO )
00003 *
00004 *  -- LAPACK routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH.
00010 *
00011 *     .. Scalar Arguments ..
00012       CHARACTER          TRANS
00013       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
00014 *     ..
00015 *     .. Array Arguments ..
00016       INTEGER            IPIV( * ), IWORK( * )
00017       REAL               A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
00018      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *  SGERFS improves the computed solution to a system of linear
00025 *  equations and provides error bounds and backward error estimates for
00026 *  the solution.
00027 *
00028 *  Arguments
00029 *  =========
00030 *
00031 *  TRANS   (input) CHARACTER*1
00032 *          Specifies the form of the system of equations:
00033 *          = 'N':  A * X = B     (No transpose)
00034 *          = 'T':  A**T * X = B  (Transpose)
00035 *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
00036 *
00037 *  N       (input) INTEGER
00038 *          The order of the matrix A.  N >= 0.
00039 *
00040 *  NRHS    (input) INTEGER
00041 *          The number of right hand sides, i.e., the number of columns
00042 *          of the matrices B and X.  NRHS >= 0.
00043 *
00044 *  A       (input) REAL array, dimension (LDA,N)
00045 *          The original N-by-N matrix A.
00046 *
00047 *  LDA     (input) INTEGER
00048 *          The leading dimension of the array A.  LDA >= max(1,N).
00049 *
00050 *  AF      (input) REAL array, dimension (LDAF,N)
00051 *          The factors L and U from the factorization A = P*L*U
00052 *          as computed by SGETRF.
00053 *
00054 *  LDAF    (input) INTEGER
00055 *          The leading dimension of the array AF.  LDAF >= max(1,N).
00056 *
00057 *  IPIV    (input) INTEGER array, dimension (N)
00058 *          The pivot indices from SGETRF; for 1<=i<=N, row i of the
00059 *          matrix was interchanged with row IPIV(i).
00060 *
00061 *  B       (input) REAL array, dimension (LDB,NRHS)
00062 *          The right hand side matrix B.
00063 *
00064 *  LDB     (input) INTEGER
00065 *          The leading dimension of the array B.  LDB >= max(1,N).
00066 *
00067 *  X       (input/output) REAL array, dimension (LDX,NRHS)
00068 *          On entry, the solution matrix X, as computed by SGETRS.
00069 *          On exit, the improved solution matrix X.
00070 *
00071 *  LDX     (input) INTEGER
00072 *          The leading dimension of the array X.  LDX >= max(1,N).
00073 *
00074 *  FERR    (output) REAL array, dimension (NRHS)
00075 *          The estimated forward error bound for each solution vector
00076 *          X(j) (the j-th column of the solution matrix X).
00077 *          If XTRUE is the true solution corresponding to X(j), FERR(j)
00078 *          is an estimated upper bound for the magnitude of the largest
00079 *          element in (X(j) - XTRUE) divided by the magnitude of the
00080 *          largest element in X(j).  The estimate is as reliable as
00081 *          the estimate for RCOND, and is almost always a slight
00082 *          overestimate of the true error.
00083 *
00084 *  BERR    (output) REAL array, dimension (NRHS)
00085 *          The componentwise relative backward error of each solution
00086 *          vector X(j) (i.e., the smallest relative change in
00087 *          any element of A or B that makes X(j) an exact solution).
00088 *
00089 *  WORK    (workspace) REAL array, dimension (3*N)
00090 *
00091 *  IWORK   (workspace) INTEGER array, dimension (N)
00092 *
00093 *  INFO    (output) INTEGER
00094 *          = 0:  successful exit
00095 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00096 *
00097 *  Internal Parameters
00098 *  ===================
00099 *
00100 *  ITMAX is the maximum number of steps of iterative refinement.
00101 *
00102 *  =====================================================================
00103 *
00104 *     .. Parameters ..
00105       INTEGER            ITMAX
00106       PARAMETER          ( ITMAX = 5 )
00107       REAL               ZERO
00108       PARAMETER          ( ZERO = 0.0E+0 )
00109       REAL               ONE
00110       PARAMETER          ( ONE = 1.0E+0 )
00111       REAL               TWO
00112       PARAMETER          ( TWO = 2.0E+0 )
00113       REAL               THREE
00114       PARAMETER          ( THREE = 3.0E+0 )
00115 *     ..
00116 *     .. Local Scalars ..
00117       LOGICAL            NOTRAN
00118       CHARACTER          TRANST
00119       INTEGER            COUNT, I, J, K, KASE, NZ
00120       REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
00121 *     ..
00122 *     .. Local Arrays ..
00123       INTEGER            ISAVE( 3 )
00124 *     ..
00125 *     .. External Subroutines ..
00126       EXTERNAL           SAXPY, SCOPY, SGEMV, SGETRS, SLACN2, XERBLA
00127 *     ..
00128 *     .. Intrinsic Functions ..
00129       INTRINSIC          ABS, MAX
00130 *     ..
00131 *     .. External Functions ..
00132       LOGICAL            LSAME
00133       REAL               SLAMCH
00134       EXTERNAL           LSAME, SLAMCH
00135 *     ..
00136 *     .. Executable Statements ..
00137 *
00138 *     Test the input parameters.
00139 *
00140       INFO = 0
00141       NOTRAN = LSAME( TRANS, 'N' )
00142       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
00143      $    LSAME( TRANS, 'C' ) ) THEN
00144          INFO = -1
00145       ELSE IF( N.LT.0 ) THEN
00146          INFO = -2
00147       ELSE IF( NRHS.LT.0 ) THEN
00148          INFO = -3
00149       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00150          INFO = -5
00151       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
00152          INFO = -7
00153       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
00154          INFO = -10
00155       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
00156          INFO = -12
00157       END IF
00158       IF( INFO.NE.0 ) THEN
00159          CALL XERBLA( 'SGERFS', -INFO )
00160          RETURN
00161       END IF
00162 *
00163 *     Quick return if possible
00164 *
00165       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
00166          DO 10 J = 1, NRHS
00167             FERR( J ) = ZERO
00168             BERR( J ) = ZERO
00169    10    CONTINUE
00170          RETURN
00171       END IF
00172 *
00173       IF( NOTRAN ) THEN
00174          TRANST = 'T'
00175       ELSE
00176          TRANST = 'N'
00177       END IF
00178 *
00179 *     NZ = maximum number of nonzero elements in each row of A, plus 1
00180 *
00181       NZ = N + 1
00182       EPS = SLAMCH( 'Epsilon' )
00183       SAFMIN = SLAMCH( 'Safe minimum' )
00184       SAFE1 = NZ*SAFMIN
00185       SAFE2 = SAFE1 / EPS
00186 *
00187 *     Do for each right hand side
00188 *
00189       DO 140 J = 1, NRHS
00190 *
00191          COUNT = 1
00192          LSTRES = THREE
00193    20    CONTINUE
00194 *
00195 *        Loop until stopping criterion is satisfied.
00196 *
00197 *        Compute residual R = B - op(A) * X,
00198 *        where op(A) = A, A**T, or A**H, depending on TRANS.
00199 *
00200          CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
00201          CALL SGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
00202      $               WORK( N+1 ), 1 )
00203 *
00204 *        Compute componentwise relative backward error from formula
00205 *
00206 *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
00207 *
00208 *        where abs(Z) is the componentwise absolute value of the matrix
00209 *        or vector Z.  If the i-th component of the denominator is less
00210 *        than SAFE2, then SAFE1 is added to the i-th components of the
00211 *        numerator and denominator before dividing.
00212 *
00213          DO 30 I = 1, N
00214             WORK( I ) = ABS( B( I, J ) )
00215    30    CONTINUE
00216 *
00217 *        Compute abs(op(A))*abs(X) + abs(B).
00218 *
00219          IF( NOTRAN ) THEN
00220             DO 50 K = 1, N
00221                XK = ABS( X( K, J ) )
00222                DO 40 I = 1, N
00223                   WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
00224    40          CONTINUE
00225    50       CONTINUE
00226          ELSE
00227             DO 70 K = 1, N
00228                S = ZERO
00229                DO 60 I = 1, N
00230                   S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
00231    60          CONTINUE
00232                WORK( K ) = WORK( K ) + S
00233    70       CONTINUE
00234          END IF
00235          S = ZERO
00236          DO 80 I = 1, N
00237             IF( WORK( I ).GT.SAFE2 ) THEN
00238                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
00239             ELSE
00240                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
00241      $             ( WORK( I )+SAFE1 ) )
00242             END IF
00243    80    CONTINUE
00244          BERR( J ) = S
00245 *
00246 *        Test stopping criterion. Continue iterating if
00247 *           1) The residual BERR(J) is larger than machine epsilon, and
00248 *           2) BERR(J) decreased by at least a factor of 2 during the
00249 *              last iteration, and
00250 *           3) At most ITMAX iterations tried.
00251 *
00252          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
00253      $       COUNT.LE.ITMAX ) THEN
00254 *
00255 *           Update solution and try again.
00256 *
00257             CALL SGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
00258      $                   INFO )
00259             CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
00260             LSTRES = BERR( J )
00261             COUNT = COUNT + 1
00262             GO TO 20
00263          END IF
00264 *
00265 *        Bound error from formula
00266 *
00267 *        norm(X - XTRUE) / norm(X) .le. FERR =
00268 *        norm( abs(inv(op(A)))*
00269 *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
00270 *
00271 *        where
00272 *          norm(Z) is the magnitude of the largest component of Z
00273 *          inv(op(A)) is the inverse of op(A)
00274 *          abs(Z) is the componentwise absolute value of the matrix or
00275 *             vector Z
00276 *          NZ is the maximum number of nonzeros in any row of A, plus 1
00277 *          EPS is machine epsilon
00278 *
00279 *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
00280 *        is incremented by SAFE1 if the i-th component of
00281 *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
00282 *
00283 *        Use SLACN2 to estimate the infinity-norm of the matrix
00284 *           inv(op(A)) * diag(W),
00285 *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
00286 *
00287          DO 90 I = 1, N
00288             IF( WORK( I ).GT.SAFE2 ) THEN
00289                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
00290             ELSE
00291                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
00292             END IF
00293    90    CONTINUE
00294 *
00295          KASE = 0
00296   100    CONTINUE
00297          CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
00298      $                KASE, ISAVE )
00299          IF( KASE.NE.0 ) THEN
00300             IF( KASE.EQ.1 ) THEN
00301 *
00302 *              Multiply by diag(W)*inv(op(A)**T).
00303 *
00304                CALL SGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK( N+1 ),
00305      $                      N, INFO )
00306                DO 110 I = 1, N
00307                   WORK( N+I ) = WORK( I )*WORK( N+I )
00308   110          CONTINUE
00309             ELSE
00310 *
00311 *              Multiply by inv(op(A))*diag(W).
00312 *
00313                DO 120 I = 1, N
00314                   WORK( N+I ) = WORK( I )*WORK( N+I )
00315   120          CONTINUE
00316                CALL SGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
00317      $                      INFO )
00318             END IF
00319             GO TO 100
00320          END IF
00321 *
00322 *        Normalize error.
00323 *
00324          LSTRES = ZERO
00325          DO 130 I = 1, N
00326             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
00327   130    CONTINUE
00328          IF( LSTRES.NE.ZERO )
00329      $      FERR( J ) = FERR( J ) / LSTRES
00330 *
00331   140 CONTINUE
00332 *
00333       RETURN
00334 *
00335 *     End of SGERFS
00336 *
00337       END
 All Files Functions