LAPACK 3.3.0
|
00001 SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK, 00002 $ LDWORK, RWORK, RESULT ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 INTEGER KBAND, LDU, LDWORK, M, N 00010 * .. 00011 * .. Array Arguments .. 00012 REAL AD( * ), AE( * ), RESULT( 2 ), RWORK( * ), 00013 $ SD( * ), SE( * ) 00014 COMPLEX U( LDU, * ), WORK( LDWORK, * ) 00015 * .. 00016 * 00017 * Purpose 00018 * ======= 00019 * 00020 * CSTT22 checks a set of M eigenvalues and eigenvectors, 00021 * 00022 * A U = U S 00023 * 00024 * where A is Hermitian tridiagonal, the columns of U are unitary, 00025 * and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1). 00026 * Two tests are performed: 00027 * 00028 * RESULT(1) = | U* A U - S | / ( |A| m ulp ) 00029 * 00030 * RESULT(2) = | I - U*U | / ( m ulp ) 00031 * 00032 * Arguments 00033 * ========= 00034 * 00035 * N (input) INTEGER 00036 * The size of the matrix. If it is zero, CSTT22 does nothing. 00037 * It must be at least zero. 00038 * 00039 * M (input) INTEGER 00040 * The number of eigenpairs to check. If it is zero, CSTT22 00041 * does nothing. It must be at least zero. 00042 * 00043 * KBAND (input) INTEGER 00044 * The bandwidth of the matrix S. It may only be zero or one. 00045 * If zero, then S is diagonal, and SE is not referenced. If 00046 * one, then S is Hermitian tri-diagonal. 00047 * 00048 * AD (input) REAL array, dimension (N) 00049 * The diagonal of the original (unfactored) matrix A. A is 00050 * assumed to be Hermitian tridiagonal. 00051 * 00052 * AE (input) REAL array, dimension (N) 00053 * The off-diagonal of the original (unfactored) matrix A. A 00054 * is assumed to be Hermitian tridiagonal. AE(1) is ignored, 00055 * AE(2) is the (1,2) and (2,1) element, etc. 00056 * 00057 * SD (input) REAL array, dimension (N) 00058 * The diagonal of the (Hermitian tri-) diagonal matrix S. 00059 * 00060 * SE (input) REAL array, dimension (N) 00061 * The off-diagonal of the (Hermitian tri-) diagonal matrix S. 00062 * Not referenced if KBSND=0. If KBAND=1, then AE(1) is 00063 * ignored, SE(2) is the (1,2) and (2,1) element, etc. 00064 * 00065 * U (input) REAL array, dimension (LDU, N) 00066 * The unitary matrix in the decomposition. 00067 * 00068 * LDU (input) INTEGER 00069 * The leading dimension of U. LDU must be at least N. 00070 * 00071 * WORK (workspace) COMPLEX array, dimension (LDWORK, M+1) 00072 * 00073 * LDWORK (input) INTEGER 00074 * The leading dimension of WORK. LDWORK must be at least 00075 * max(1,M). 00076 * 00077 * RWORK (workspace) REAL array, dimension (N) 00078 * 00079 * RESULT (output) REAL array, dimension (2) 00080 * The values computed by the two tests described above. The 00081 * values are currently limited to 1/ulp, to avoid overflow. 00082 * 00083 * ===================================================================== 00084 * 00085 * .. Parameters .. 00086 REAL ZERO, ONE 00087 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 00088 COMPLEX CZERO, CONE 00089 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), 00090 $ CONE = ( 1.0E+0, 0.0E+0 ) ) 00091 * .. 00092 * .. Local Scalars .. 00093 INTEGER I, J, K 00094 REAL ANORM, ULP, UNFL, WNORM 00095 COMPLEX AUKJ 00096 * .. 00097 * .. External Functions .. 00098 REAL CLANGE, CLANSY, SLAMCH 00099 EXTERNAL CLANGE, CLANSY, SLAMCH 00100 * .. 00101 * .. External Subroutines .. 00102 EXTERNAL CGEMM 00103 * .. 00104 * .. Intrinsic Functions .. 00105 INTRINSIC ABS, MAX, MIN, REAL 00106 * .. 00107 * .. Executable Statements .. 00108 * 00109 RESULT( 1 ) = ZERO 00110 RESULT( 2 ) = ZERO 00111 IF( N.LE.0 .OR. M.LE.0 ) 00112 $ RETURN 00113 * 00114 UNFL = SLAMCH( 'Safe minimum' ) 00115 ULP = SLAMCH( 'Epsilon' ) 00116 * 00117 * Do Test 1 00118 * 00119 * Compute the 1-norm of A. 00120 * 00121 IF( N.GT.1 ) THEN 00122 ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) ) 00123 DO 10 J = 2, N - 1 00124 ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+ 00125 $ ABS( AE( J-1 ) ) ) 00126 10 CONTINUE 00127 ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) ) 00128 ELSE 00129 ANORM = ABS( AD( 1 ) ) 00130 END IF 00131 ANORM = MAX( ANORM, UNFL ) 00132 * 00133 * Norm of U*AU - S 00134 * 00135 DO 40 I = 1, M 00136 DO 30 J = 1, M 00137 WORK( I, J ) = CZERO 00138 DO 20 K = 1, N 00139 AUKJ = AD( K )*U( K, J ) 00140 IF( K.NE.N ) 00141 $ AUKJ = AUKJ + AE( K )*U( K+1, J ) 00142 IF( K.NE.1 ) 00143 $ AUKJ = AUKJ + AE( K-1 )*U( K-1, J ) 00144 WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ 00145 20 CONTINUE 00146 30 CONTINUE 00147 WORK( I, I ) = WORK( I, I ) - SD( I ) 00148 IF( KBAND.EQ.1 ) THEN 00149 IF( I.NE.1 ) 00150 $ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 ) 00151 IF( I.NE.N ) 00152 $ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I ) 00153 END IF 00154 40 CONTINUE 00155 * 00156 WNORM = CLANSY( '1', 'L', M, WORK, M, RWORK ) 00157 * 00158 IF( ANORM.GT.WNORM ) THEN 00159 RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP ) 00160 ELSE 00161 IF( ANORM.LT.ONE ) THEN 00162 RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP ) 00163 ELSE 00164 RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP ) 00165 END IF 00166 END IF 00167 * 00168 * Do Test 2 00169 * 00170 * Compute U*U - I 00171 * 00172 CALL CGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK, 00173 $ M ) 00174 * 00175 DO 50 J = 1, M 00176 WORK( J, J ) = WORK( J, J ) - ONE 00177 50 CONTINUE 00178 * 00179 RESULT( 2 ) = MIN( REAL( M ), CLANGE( '1', M, M, WORK, M, 00180 $ RWORK ) ) / ( M*ULP ) 00181 * 00182 RETURN 00183 * 00184 * End of CSTT22 00185 * 00186 END