LAPACK 3.3.0
|
00001 SUBROUTINE SPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, 00002 $ IWORK, INFO ) 00003 * 00004 * -- LAPACK routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. 00010 * 00011 * .. Scalar Arguments .. 00012 CHARACTER UPLO 00013 INTEGER INFO, KD, LDAB, N 00014 REAL ANORM, RCOND 00015 * .. 00016 * .. Array Arguments .. 00017 INTEGER IWORK( * ) 00018 REAL AB( LDAB, * ), WORK( * ) 00019 * .. 00020 * 00021 * Purpose 00022 * ======= 00023 * 00024 * SPBCON estimates the reciprocal of the condition number (in the 00025 * 1-norm) of a real symmetric positive definite band matrix using the 00026 * Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF. 00027 * 00028 * An estimate is obtained for norm(inv(A)), and the reciprocal of the 00029 * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). 00030 * 00031 * Arguments 00032 * ========= 00033 * 00034 * UPLO (input) CHARACTER*1 00035 * = 'U': Upper triangular factor stored in AB; 00036 * = 'L': Lower triangular factor stored in AB. 00037 * 00038 * N (input) INTEGER 00039 * The order of the matrix A. N >= 0. 00040 * 00041 * KD (input) INTEGER 00042 * The number of superdiagonals of the matrix A if UPLO = 'U', 00043 * or the number of subdiagonals if UPLO = 'L'. KD >= 0. 00044 * 00045 * AB (input) REAL array, dimension (LDAB,N) 00046 * The triangular factor U or L from the Cholesky factorization 00047 * A = U**T*U or A = L*L**T of the band matrix A, stored in the 00048 * first KD+1 rows of the array. The j-th column of U or L is 00049 * stored in the j-th column of the array AB as follows: 00050 * if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; 00051 * if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). 00052 * 00053 * LDAB (input) INTEGER 00054 * The leading dimension of the array AB. LDAB >= KD+1. 00055 * 00056 * ANORM (input) REAL 00057 * The 1-norm (or infinity-norm) of the symmetric band matrix A. 00058 * 00059 * RCOND (output) REAL 00060 * The reciprocal of the condition number of the matrix A, 00061 * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an 00062 * estimate of the 1-norm of inv(A) computed in this routine. 00063 * 00064 * WORK (workspace) REAL array, dimension (3*N) 00065 * 00066 * IWORK (workspace) INTEGER array, dimension (N) 00067 * 00068 * INFO (output) INTEGER 00069 * = 0: successful exit 00070 * < 0: if INFO = -i, the i-th argument had an illegal value 00071 * 00072 * ===================================================================== 00073 * 00074 * .. Parameters .. 00075 REAL ONE, ZERO 00076 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00077 * .. 00078 * .. Local Scalars .. 00079 LOGICAL UPPER 00080 CHARACTER NORMIN 00081 INTEGER IX, KASE 00082 REAL AINVNM, SCALE, SCALEL, SCALEU, SMLNUM 00083 * .. 00084 * .. Local Arrays .. 00085 INTEGER ISAVE( 3 ) 00086 * .. 00087 * .. External Functions .. 00088 LOGICAL LSAME 00089 INTEGER ISAMAX 00090 REAL SLAMCH 00091 EXTERNAL LSAME, ISAMAX, SLAMCH 00092 * .. 00093 * .. External Subroutines .. 00094 EXTERNAL SLACN2, SLATBS, SRSCL, XERBLA 00095 * .. 00096 * .. Intrinsic Functions .. 00097 INTRINSIC ABS 00098 * .. 00099 * .. Executable Statements .. 00100 * 00101 * Test the input parameters. 00102 * 00103 INFO = 0 00104 UPPER = LSAME( UPLO, 'U' ) 00105 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00106 INFO = -1 00107 ELSE IF( N.LT.0 ) THEN 00108 INFO = -2 00109 ELSE IF( KD.LT.0 ) THEN 00110 INFO = -3 00111 ELSE IF( LDAB.LT.KD+1 ) THEN 00112 INFO = -5 00113 ELSE IF( ANORM.LT.ZERO ) THEN 00114 INFO = -6 00115 END IF 00116 IF( INFO.NE.0 ) THEN 00117 CALL XERBLA( 'SPBCON', -INFO ) 00118 RETURN 00119 END IF 00120 * 00121 * Quick return if possible 00122 * 00123 RCOND = ZERO 00124 IF( N.EQ.0 ) THEN 00125 RCOND = ONE 00126 RETURN 00127 ELSE IF( ANORM.EQ.ZERO ) THEN 00128 RETURN 00129 END IF 00130 * 00131 SMLNUM = SLAMCH( 'Safe minimum' ) 00132 * 00133 * Estimate the 1-norm of the inverse. 00134 * 00135 KASE = 0 00136 NORMIN = 'N' 00137 10 CONTINUE 00138 CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE ) 00139 IF( KASE.NE.0 ) THEN 00140 IF( UPPER ) THEN 00141 * 00142 * Multiply by inv(U'). 00143 * 00144 CALL SLATBS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, 00145 $ KD, AB, LDAB, WORK, SCALEL, WORK( 2*N+1 ), 00146 $ INFO ) 00147 NORMIN = 'Y' 00148 * 00149 * Multiply by inv(U). 00150 * 00151 CALL SLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N, 00152 $ KD, AB, LDAB, WORK, SCALEU, WORK( 2*N+1 ), 00153 $ INFO ) 00154 ELSE 00155 * 00156 * Multiply by inv(L). 00157 * 00158 CALL SLATBS( 'Lower', 'No transpose', 'Non-unit', NORMIN, N, 00159 $ KD, AB, LDAB, WORK, SCALEL, WORK( 2*N+1 ), 00160 $ INFO ) 00161 NORMIN = 'Y' 00162 * 00163 * Multiply by inv(L'). 00164 * 00165 CALL SLATBS( 'Lower', 'Transpose', 'Non-unit', NORMIN, N, 00166 $ KD, AB, LDAB, WORK, SCALEU, WORK( 2*N+1 ), 00167 $ INFO ) 00168 END IF 00169 * 00170 * Multiply by 1/SCALE if doing so will not cause overflow. 00171 * 00172 SCALE = SCALEL*SCALEU 00173 IF( SCALE.NE.ONE ) THEN 00174 IX = ISAMAX( N, WORK, 1 ) 00175 IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO ) 00176 $ GO TO 20 00177 CALL SRSCL( N, SCALE, WORK, 1 ) 00178 END IF 00179 GO TO 10 00180 END IF 00181 * 00182 * Compute the estimate of the reciprocal condition number. 00183 * 00184 IF( AINVNM.NE.ZERO ) 00185 $ RCOND = ( ONE / AINVNM ) / ANORM 00186 * 00187 20 CONTINUE 00188 * 00189 RETURN 00190 * 00191 * End of SPBCON 00192 * 00193 END