LAPACK 3.3.0

cgerfsx.f

Go to the documentation of this file.
00001       SUBROUTINE CGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
00002      $                    R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
00003      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
00004      $                    WORK, RWORK, INFO )
00005 *
00006 *     -- LAPACK routine (version 3.2.2)                                 --
00007 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
00008 *     -- Jason Riedy of Univ. of California Berkeley.                 --
00009 *     -- June 2010                                                    --
00010 *
00011 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
00012 *     -- Univ. of California Berkeley and NAG Ltd.                    --
00013 *
00014       IMPLICIT NONE
00015 *     ..
00016 *     .. Scalar Arguments ..
00017       CHARACTER          TRANS, EQUED
00018       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
00019      $                   N_ERR_BNDS
00020       REAL               RCOND
00021 *     ..
00022 *     .. Array Arguments ..
00023       INTEGER            IPIV( * )
00024       COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
00025      $                   X( LDX , * ), WORK( * )
00026       REAL               R( * ), C( * ), PARAMS( * ), BERR( * ),
00027      $                   ERR_BNDS_NORM( NRHS, * ),
00028      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
00029 *     ..
00030 *
00031 *     Purpose
00032 *     =======
00033 *
00034 *     CGERFSX improves the computed solution to a system of linear
00035 *     equations and provides error bounds and backward error estimates
00036 *     for the solution.  In addition to normwise error bound, the code
00037 *     provides maximum componentwise error bound if possible.  See
00038 *     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
00039 *     error bounds.
00040 *
00041 *     The original system of linear equations may have been equilibrated
00042 *     before calling this routine, as described by arguments EQUED, R
00043 *     and C below. In this case, the solution and error bounds returned
00044 *     are for the original unequilibrated system.
00045 *
00046 *     Arguments
00047 *     =========
00048 *
00049 *     Some optional parameters are bundled in the PARAMS array.  These
00050 *     settings determine how refinement is performed, but often the
00051 *     defaults are acceptable.  If the defaults are acceptable, users
00052 *     can pass NPARAMS = 0 which prevents the source code from accessing
00053 *     the PARAMS argument.
00054 *
00055 *     TRANS   (input) CHARACTER*1
00056 *     Specifies the form of the system of equations:
00057 *       = 'N':  A * X = B     (No transpose)
00058 *       = 'T':  A**T * X = B  (Transpose)
00059 *       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
00060 *
00061 *     EQUED   (input) CHARACTER*1
00062 *     Specifies the form of equilibration that was done to A
00063 *     before calling this routine. This is needed to compute
00064 *     the solution and error bounds correctly.
00065 *       = 'N':  No equilibration
00066 *       = 'R':  Row equilibration, i.e., A has been premultiplied by
00067 *               diag(R).
00068 *       = 'C':  Column equilibration, i.e., A has been postmultiplied
00069 *               by diag(C).
00070 *       = 'B':  Both row and column equilibration, i.e., A has been
00071 *               replaced by diag(R) * A * diag(C).
00072 *               The right hand side B has been changed accordingly.
00073 *
00074 *     N       (input) INTEGER
00075 *     The order of the matrix A.  N >= 0.
00076 *
00077 *     NRHS    (input) INTEGER
00078 *     The number of right hand sides, i.e., the number of columns
00079 *     of the matrices B and X.  NRHS >= 0.
00080 *
00081 *     A       (input) COMPLEX array, dimension (LDA,N)
00082 *     The original N-by-N matrix A.
00083 *
00084 *     LDA     (input) INTEGER
00085 *     The leading dimension of the array A.  LDA >= max(1,N).
00086 *
00087 *     AF      (input) COMPLEX array, dimension (LDAF,N)
00088 *     The factors L and U from the factorization A = P*L*U
00089 *     as computed by CGETRF.
00090 *
00091 *     LDAF    (input) INTEGER
00092 *     The leading dimension of the array AF.  LDAF >= max(1,N).
00093 *
00094 *     IPIV    (input) INTEGER array, dimension (N)
00095 *     The pivot indices from CGETRF; for 1<=i<=N, row i of the
00096 *     matrix was interchanged with row IPIV(i).
00097 *
00098 *     R       (input) REAL array, dimension (N)
00099 *     The row scale factors for A.  If EQUED = 'R' or 'B', A is
00100 *     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
00101 *     is not accessed. 
00102 *     If R is accessed, each element of R should be a power of the radix
00103 *     to ensure a reliable solution and error estimates. Scaling by
00104 *     powers of the radix does not cause rounding errors unless the
00105 *     result underflows or overflows. Rounding errors during scaling
00106 *     lead to refining with a matrix that is not equivalent to the
00107 *     input matrix, producing error estimates that may not be
00108 *     reliable.
00109 *
00110 *     C       (input) REAL array, dimension (N)
00111 *     The column scale factors for A.  If EQUED = 'C' or 'B', A is
00112 *     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
00113 *     is not accessed. 
00114 *     If C is accessed, each element of C should be a power of the radix
00115 *     to ensure a reliable solution and error estimates. Scaling by
00116 *     powers of the radix does not cause rounding errors unless the
00117 *     result underflows or overflows. Rounding errors during scaling
00118 *     lead to refining with a matrix that is not equivalent to the
00119 *     input matrix, producing error estimates that may not be
00120 *     reliable.
00121 *
00122 *     B       (input) COMPLEX array, dimension (LDB,NRHS)
00123 *     The right hand side matrix B.
00124 *
00125 *     LDB     (input) INTEGER
00126 *     The leading dimension of the array B.  LDB >= max(1,N).
00127 *
00128 *     X       (input/output) COMPLEX array, dimension (LDX,NRHS)
00129 *     On entry, the solution matrix X, as computed by CGETRS.
00130 *     On exit, the improved solution matrix X.
00131 *
00132 *     LDX     (input) INTEGER
00133 *     The leading dimension of the array X.  LDX >= max(1,N).
00134 *
00135 *     RCOND   (output) REAL
00136 *     Reciprocal scaled condition number.  This is an estimate of the
00137 *     reciprocal Skeel condition number of the matrix A after
00138 *     equilibration (if done).  If this is less than the machine
00139 *     precision (in particular, if it is zero), the matrix is singular
00140 *     to working precision.  Note that the error may still be small even
00141 *     if this number is very small and the matrix appears ill-
00142 *     conditioned.
00143 *
00144 *     BERR    (output) REAL array, dimension (NRHS)
00145 *     Componentwise relative backward error.  This is the
00146 *     componentwise relative backward error of each solution vector X(j)
00147 *     (i.e., the smallest relative change in any element of A or B that
00148 *     makes X(j) an exact solution).
00149 *
00150 *     N_ERR_BNDS (input) INTEGER
00151 *     Number of error bounds to return for each right hand side
00152 *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
00153 *     ERR_BNDS_COMP below.
00154 *
00155 *     ERR_BNDS_NORM  (output) REAL array, dimension (NRHS, N_ERR_BNDS)
00156 *     For each right-hand side, this array contains information about
00157 *     various error bounds and condition numbers corresponding to the
00158 *     normwise relative error, which is defined as follows:
00159 *
00160 *     Normwise relative error in the ith solution vector:
00161 *             max_j (abs(XTRUE(j,i) - X(j,i)))
00162 *            ------------------------------
00163 *                  max_j abs(X(j,i))
00164 *
00165 *     The array is indexed by the type of error information as described
00166 *     below. There currently are up to three pieces of information
00167 *     returned.
00168 *
00169 *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
00170 *     right-hand side.
00171 *
00172 *     The second index in ERR_BNDS_NORM(:,err) contains the following
00173 *     three fields:
00174 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
00175 *              reciprocal condition number is less than the threshold
00176 *              sqrt(n) * slamch('Epsilon').
00177 *
00178 *     err = 2 "Guaranteed" error bound: The estimated forward error,
00179 *              almost certainly within a factor of 10 of the true error
00180 *              so long as the next entry is greater than the threshold
00181 *              sqrt(n) * slamch('Epsilon'). This error bound should only
00182 *              be trusted if the previous boolean is true.
00183 *
00184 *     err = 3  Reciprocal condition number: Estimated normwise
00185 *              reciprocal condition number.  Compared with the threshold
00186 *              sqrt(n) * slamch('Epsilon') to determine if the error
00187 *              estimate is "guaranteed". These reciprocal condition
00188 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
00189 *              appropriately scaled matrix Z.
00190 *              Let Z = S*A, where S scales each row by a power of the
00191 *              radix so all absolute row sums of Z are approximately 1.
00192 *
00193 *     See Lapack Working Note 165 for further details and extra
00194 *     cautions.
00195 *
00196 *     ERR_BNDS_COMP  (output) REAL array, dimension (NRHS, N_ERR_BNDS)
00197 *     For each right-hand side, this array contains information about
00198 *     various error bounds and condition numbers corresponding to the
00199 *     componentwise relative error, which is defined as follows:
00200 *
00201 *     Componentwise relative error in the ith solution vector:
00202 *                    abs(XTRUE(j,i) - X(j,i))
00203 *             max_j ----------------------
00204 *                         abs(X(j,i))
00205 *
00206 *     The array is indexed by the right-hand side i (on which the
00207 *     componentwise relative error depends), and the type of error
00208 *     information as described below. There currently are up to three
00209 *     pieces of information returned for each right-hand side. If
00210 *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
00211 *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
00212 *     the first (:,N_ERR_BNDS) entries are returned.
00213 *
00214 *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
00215 *     right-hand side.
00216 *
00217 *     The second index in ERR_BNDS_COMP(:,err) contains the following
00218 *     three fields:
00219 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
00220 *              reciprocal condition number is less than the threshold
00221 *              sqrt(n) * slamch('Epsilon').
00222 *
00223 *     err = 2 "Guaranteed" error bound: The estimated forward error,
00224 *              almost certainly within a factor of 10 of the true error
00225 *              so long as the next entry is greater than the threshold
00226 *              sqrt(n) * slamch('Epsilon'). This error bound should only
00227 *              be trusted if the previous boolean is true.
00228 *
00229 *     err = 3  Reciprocal condition number: Estimated componentwise
00230 *              reciprocal condition number.  Compared with the threshold
00231 *              sqrt(n) * slamch('Epsilon') to determine if the error
00232 *              estimate is "guaranteed". These reciprocal condition
00233 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
00234 *              appropriately scaled matrix Z.
00235 *              Let Z = S*(A*diag(x)), where x is the solution for the
00236 *              current right-hand side and S scales each row of
00237 *              A*diag(x) by a power of the radix so all absolute row
00238 *              sums of Z are approximately 1.
00239 *
00240 *     See Lapack Working Note 165 for further details and extra
00241 *     cautions.
00242 *
00243 *     NPARAMS (input) INTEGER
00244 *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
00245 *     PARAMS array is never referenced and default values are used.
00246 *
00247 *     PARAMS  (input / output) REAL array, dimension NPARAMS
00248 *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
00249 *     that entry will be filled with default value used for that
00250 *     parameter.  Only positions up to NPARAMS are accessed; defaults
00251 *     are used for higher-numbered parameters.
00252 *
00253 *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
00254 *            refinement or not.
00255 *         Default: 1.0
00256 *            = 0.0 : No refinement is performed, and no error bounds are
00257 *                    computed.
00258 *            = 1.0 : Use the double-precision refinement algorithm,
00259 *                    possibly with doubled-single computations if the
00260 *                    compilation environment does not support DOUBLE
00261 *                    PRECISION.
00262 *              (other values are reserved for future use)
00263 *
00264 *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
00265 *            computations allowed for refinement.
00266 *         Default: 10
00267 *         Aggressive: Set to 100 to permit convergence using approximate
00268 *                     factorizations or factorizations other than LU. If
00269 *                     the factorization uses a technique other than
00270 *                     Gaussian elimination, the guarantees in
00271 *                     err_bnds_norm and err_bnds_comp may no longer be
00272 *                     trustworthy.
00273 *
00274 *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
00275 *            will attempt to find a solution with small componentwise
00276 *            relative error in the double-precision algorithm.  Positive
00277 *            is true, 0.0 is false.
00278 *         Default: 1.0 (attempt componentwise convergence)
00279 *
00280 *     WORK    (workspace) COMPLEX array, dimension (2*N)
00281 *
00282 *     RWORK   (workspace) REAL array, dimension (2*N)
00283 *
00284 *     INFO    (output) INTEGER
00285 *       = 0:  Successful exit. The solution to every right-hand side is
00286 *         guaranteed.
00287 *       < 0:  If INFO = -i, the i-th argument had an illegal value
00288 *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
00289 *         has been completed, but the factor U is exactly singular, so
00290 *         the solution and error bounds could not be computed. RCOND = 0
00291 *         is returned.
00292 *       = N+J: The solution corresponding to the Jth right-hand side is
00293 *         not guaranteed. The solutions corresponding to other right-
00294 *         hand sides K with K > J may not be guaranteed as well, but
00295 *         only the first such right-hand side is reported. If a small
00296 *         componentwise error is not requested (PARAMS(3) = 0.0) then
00297 *         the Jth right-hand side is the first with a normwise error
00298 *         bound that is not guaranteed (the smallest J such
00299 *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
00300 *         the Jth right-hand side is the first with either a normwise or
00301 *         componentwise error bound that is not guaranteed (the smallest
00302 *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
00303 *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
00304 *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
00305 *         about all of the right-hand sides check ERR_BNDS_NORM or
00306 *         ERR_BNDS_COMP.
00307 *
00308 *     ==================================================================
00309 *
00310 *     .. Parameters ..
00311       REAL               ZERO, ONE
00312       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00313       REAL               ITREF_DEFAULT, ITHRESH_DEFAULT,
00314      $                   COMPONENTWISE_DEFAULT
00315       REAL               RTHRESH_DEFAULT, DZTHRESH_DEFAULT
00316       PARAMETER          ( ITREF_DEFAULT = 1.0 )
00317       PARAMETER          ( ITHRESH_DEFAULT = 10.0 )
00318       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0 )
00319       PARAMETER          ( RTHRESH_DEFAULT = 0.5 )
00320       PARAMETER          ( DZTHRESH_DEFAULT = 0.25 )
00321       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
00322      $                   LA_LINRX_CWISE_I
00323       PARAMETER          ( LA_LINRX_ITREF_I = 1,
00324      $                   LA_LINRX_ITHRESH_I = 2 )
00325       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
00326       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
00327      $                   LA_LINRX_RCOND_I
00328       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
00329       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
00330 *     ..
00331 *     .. Local Scalars ..
00332       CHARACTER(1)       NORM
00333       LOGICAL            ROWEQU, COLEQU, NOTRAN
00334       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE
00335       INTEGER            N_NORMS
00336       REAL               ANORM, RCOND_TMP
00337       REAL               ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
00338       LOGICAL            IGNORE_CWISE
00339       INTEGER            ITHRESH
00340       REAL               RTHRESH, UNSTABLE_THRESH
00341 *     ..
00342 *     .. External Subroutines ..
00343       EXTERNAL           XERBLA, CGECON, CLA_GERFSX_EXTENDED
00344 *     ..
00345 *     .. Intrinsic Functions ..
00346       INTRINSIC          MAX, SQRT, TRANSFER
00347 *     ..
00348 *     .. External Functions ..
00349       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
00350       EXTERNAL           SLAMCH, CLANGE, CLA_GERCOND_X, CLA_GERCOND_C
00351       REAL               SLAMCH, CLANGE, CLA_GERCOND_X, CLA_GERCOND_C
00352       LOGICAL            LSAME
00353       INTEGER            BLAS_FPINFO_X
00354       INTEGER            ILATRANS, ILAPREC
00355 *     ..
00356 *     .. Executable Statements ..
00357 *
00358 *     Check the input parameters.
00359 *
00360       INFO = 0
00361       TRANS_TYPE = ILATRANS( TRANS )
00362       REF_TYPE = INT( ITREF_DEFAULT )
00363       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
00364          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0 ) THEN
00365             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
00366          ELSE
00367             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
00368          END IF
00369       END IF
00370 *
00371 *     Set default parameters.
00372 *
00373       ILLRCOND_THRESH = REAL( N ) * SLAMCH( 'Epsilon' )
00374       ITHRESH = INT( ITHRESH_DEFAULT )
00375       RTHRESH = RTHRESH_DEFAULT
00376       UNSTABLE_THRESH = DZTHRESH_DEFAULT
00377       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0
00378 *
00379       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
00380          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0 ) THEN
00381             PARAMS(LA_LINRX_ITHRESH_I) = ITHRESH
00382          ELSE
00383             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
00384          END IF
00385       END IF
00386       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
00387          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0 ) THEN
00388             IF ( IGNORE_CWISE ) THEN
00389                PARAMS( LA_LINRX_CWISE_I ) = 0.0
00390             ELSE
00391                PARAMS( LA_LINRX_CWISE_I ) = 1.0
00392             END IF
00393          ELSE
00394             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0
00395          END IF
00396       END IF
00397       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
00398          N_NORMS = 0
00399       ELSE IF ( IGNORE_CWISE ) THEN
00400          N_NORMS = 1
00401       ELSE
00402          N_NORMS = 2
00403       END IF
00404 *
00405       NOTRAN = LSAME( TRANS, 'N' )
00406       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
00407       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
00408 *
00409 *     Test input parameters.
00410 *
00411       IF( TRANS_TYPE.EQ.-1 ) THEN
00412         INFO = -1
00413       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
00414      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
00415         INFO = -2
00416       ELSE IF( N.LT.0 ) THEN
00417         INFO = -3
00418       ELSE IF( NRHS.LT.0 ) THEN
00419         INFO = -4
00420       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00421         INFO = -6
00422       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
00423         INFO = -8
00424       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
00425         INFO = -13
00426       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
00427         INFO = -15
00428       END IF
00429       IF( INFO.NE.0 ) THEN
00430         CALL XERBLA( 'CGERFSX', -INFO )
00431         RETURN
00432       END IF
00433 *
00434 *     Quick return if possible.
00435 *
00436       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
00437          RCOND = 1.0
00438          DO J = 1, NRHS
00439             BERR( J ) = 0.0
00440             IF ( N_ERR_BNDS .GE. 1 ) THEN
00441                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) =  1.0
00442                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
00443             END IF
00444             IF ( N_ERR_BNDS .GE. 2 ) THEN
00445                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0
00446                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0
00447             END IF
00448             IF ( N_ERR_BNDS .GE. 3 ) THEN
00449                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0
00450                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0
00451             END IF
00452          END DO
00453          RETURN
00454       END IF
00455 *
00456 *     Default to failure.
00457 *
00458       RCOND = 0.0
00459       DO J = 1, NRHS
00460          BERR( J ) = 1.0
00461          IF ( N_ERR_BNDS .GE. 1 ) THEN
00462             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
00463             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
00464          END IF
00465          IF ( N_ERR_BNDS .GE. 2 ) THEN
00466             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
00467             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
00468          END IF
00469          IF ( N_ERR_BNDS .GE. 3 ) THEN
00470             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0
00471             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0
00472          END IF
00473       END DO
00474 *
00475 *     Compute the norm of A and the reciprocal of the condition
00476 *     number of A.
00477 *
00478       IF( NOTRAN ) THEN
00479          NORM = 'I'
00480       ELSE
00481          NORM = '1'
00482       END IF
00483       ANORM = CLANGE( NORM, N, N, A, LDA, RWORK )
00484       CALL CGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
00485 *
00486 *     Perform refinement on each right-hand side
00487 *
00488       IF ( REF_TYPE .NE. 0 ) THEN
00489 
00490          PREC_TYPE = ILAPREC( 'D' )
00491 
00492          IF ( NOTRAN ) THEN
00493             CALL CLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
00494      $           NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B,
00495      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
00496      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
00497      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
00498      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
00499      $           INFO )
00500          ELSE
00501             CALL CLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N,
00502      $           NRHS, A, LDA, AF, LDAF, IPIV, ROWEQU, R, B,
00503      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
00504      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
00505      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
00506      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
00507      $           INFO )
00508          END IF
00509       END IF
00510 
00511       ERR_LBND = MAX( 10.0, SQRT( REAL( N ) ) ) * SLAMCH( 'Epsilon' )
00512       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
00513 *
00514 *     Compute scaled normwise condition number cond(A*C).
00515 *
00516          IF ( COLEQU .AND. NOTRAN ) THEN
00517             RCOND_TMP = CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV,
00518      $           C, .TRUE., INFO, WORK, RWORK )
00519          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
00520             RCOND_TMP = CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV,
00521      $           R, .TRUE., INFO, WORK, RWORK )
00522          ELSE
00523             RCOND_TMP = CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV,
00524      $           C, .FALSE., INFO, WORK, RWORK )
00525          END IF
00526          DO J = 1, NRHS
00527 *
00528 *     Cap the error at 1.0.
00529 *
00530             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
00531      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0 )
00532      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
00533 *
00534 *     Threshold the error (see LAWN).
00535 *
00536             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
00537                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
00538                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0
00539                IF ( INFO .LE. N ) INFO = N + J
00540             ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND)
00541      $              THEN
00542                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
00543                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
00544             END IF
00545 *
00546 *     Save the condition number.
00547 *
00548             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
00549                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
00550             END IF
00551          END DO
00552       END IF
00553 
00554       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
00555 *
00556 *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
00557 *     each right-hand side using the current solution as an estimate of
00558 *     the true solution.  If the componentwise error estimate is too
00559 *     large, then the solution is a lousy estimate of truth and the
00560 *     estimated RCOND may be too optimistic.  To avoid misleading users,
00561 *     the inverse condition number is set to 0.0 when the estimated
00562 *     cwise error is at least CWISE_WRONG.
00563 *
00564          CWISE_WRONG = SQRT( SLAMCH( 'Epsilon' ) )
00565          DO J = 1, NRHS
00566             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
00567      $     THEN
00568                RCOND_TMP = CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF,
00569      $              IPIV, X(1,J), INFO, WORK, RWORK )
00570             ELSE
00571                RCOND_TMP = 0.0
00572             END IF
00573 *
00574 *     Cap the error at 1.0.
00575 *
00576             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
00577      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0 )
00578      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
00579 *
00580 *     Threshold the error (see LAWN).
00581 *
00582             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
00583                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
00584                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0
00585                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0
00586      $              .AND. INFO.LT.N + J ) INFO = N + J
00587             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
00588      $              .LT. ERR_LBND ) THEN
00589                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
00590                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
00591             END IF
00592 *
00593 *     Save the condition number.
00594 *
00595             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
00596                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
00597             END IF
00598 
00599          END DO
00600       END IF
00601 *
00602       RETURN
00603 *
00604 *     End of CGERFSX
00605 *
00606       END
 All Files Functions