LAPACK 3.3.0

clahr2.f

Go to the documentation of this file.
00001       SUBROUTINE CLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
00002 *
00003 *  -- LAPACK auxiliary routine (version 3.2.1)                        --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --*  -- April 2009                                                      --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *
00007 *     .. Scalar Arguments ..
00008       INTEGER            K, LDA, LDT, LDY, N, NB
00009 *     ..
00010 *     .. Array Arguments ..
00011       COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
00012      $                   Y( LDY, NB )
00013 *     ..
00014 *
00015 *  Purpose
00016 *  =======
00017 *
00018 *  CLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1)
00019 *  matrix A so that elements below the k-th subdiagonal are zero. The
00020 *  reduction is performed by an unitary similarity transformation
00021 *  Q' * A * Q. The routine returns the matrices V and T which determine
00022 *  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
00023 *
00024 *  This is an auxiliary routine called by CGEHRD.
00025 *
00026 *  Arguments
00027 *  =========
00028 *
00029 *  N       (input) INTEGER
00030 *          The order of the matrix A.
00031 *
00032 *  K       (input) INTEGER
00033 *          The offset for the reduction. Elements below the k-th
00034 *          subdiagonal in the first NB columns are reduced to zero.
00035 *          K < N.
00036 *
00037 *  NB      (input) INTEGER
00038 *          The number of columns to be reduced.
00039 *
00040 *  A       (input/output) COMPLEX array, dimension (LDA,N-K+1)
00041 *          On entry, the n-by-(n-k+1) general matrix A.
00042 *          On exit, the elements on and above the k-th subdiagonal in
00043 *          the first NB columns are overwritten with the corresponding
00044 *          elements of the reduced matrix; the elements below the k-th
00045 *          subdiagonal, with the array TAU, represent the matrix Q as a
00046 *          product of elementary reflectors. The other columns of A are
00047 *          unchanged. See Further Details.
00048 *
00049 *  LDA     (input) INTEGER
00050 *          The leading dimension of the array A.  LDA >= max(1,N).
00051 *
00052 *  TAU     (output) COMPLEX array, dimension (NB)
00053 *          The scalar factors of the elementary reflectors. See Further
00054 *          Details.
00055 *
00056 *  T       (output) COMPLEX array, dimension (LDT,NB)
00057 *          The upper triangular matrix T.
00058 *
00059 *  LDT     (input) INTEGER
00060 *          The leading dimension of the array T.  LDT >= NB.
00061 *
00062 *  Y       (output) COMPLEX array, dimension (LDY,NB)
00063 *          The n-by-nb matrix Y.
00064 *
00065 *  LDY     (input) INTEGER
00066 *          The leading dimension of the array Y. LDY >= N.
00067 *
00068 *  Further Details
00069 *  ===============
00070 *
00071 *  The matrix Q is represented as a product of nb elementary reflectors
00072 *
00073 *     Q = H(1) H(2) . . . H(nb).
00074 *
00075 *  Each H(i) has the form
00076 *
00077 *     H(i) = I - tau * v * v'
00078 *
00079 *  where tau is a complex scalar, and v is a complex vector with
00080 *  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
00081 *  A(i+k+1:n,i), and tau in TAU(i).
00082 *
00083 *  The elements of the vectors v together form the (n-k+1)-by-nb matrix
00084 *  V which is needed, with T and Y, to apply the transformation to the
00085 *  unreduced part of the matrix, using an update of the form:
00086 *  A := (I - V*T*V') * (A - Y*V').
00087 *
00088 *  The contents of A on exit are illustrated by the following example
00089 *  with n = 7, k = 3 and nb = 2:
00090 *
00091 *     ( a   a   a   a   a )
00092 *     ( a   a   a   a   a )
00093 *     ( a   a   a   a   a )
00094 *     ( h   h   a   a   a )
00095 *     ( v1  h   a   a   a )
00096 *     ( v1  v2  a   a   a )
00097 *     ( v1  v2  a   a   a )
00098 *
00099 *  where a denotes an element of the original matrix A, h denotes a
00100 *  modified element of the upper Hessenberg matrix H, and vi denotes an
00101 *  element of the vector defining H(i).
00102 *
00103 *  This subroutine is a slight modification of LAPACK-3.0's DLAHRD
00104 *  incorporating improvements proposed by Quintana-Orti and Van de
00105 *  Gejin. Note that the entries of A(1:K,2:NB) differ from those
00106 *  returned by the original LAPACK-3.0's DLAHRD routine. (This
00107 *  subroutine is not backward compatible with LAPACK-3.0's DLAHRD.)
00108 *
00109 *  References
00110 *  ==========
00111 *
00112 *  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
00113 *  performance of reduction to Hessenberg form," ACM Transactions on
00114 *  Mathematical Software, 32(2):180-194, June 2006.
00115 *
00116 *  =====================================================================
00117 *
00118 *     .. Parameters ..
00119       COMPLEX            ZERO, ONE
00120       PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ), 
00121      $                     ONE = ( 1.0E+0, 0.0E+0 ) )
00122 *     ..
00123 *     .. Local Scalars ..
00124       INTEGER            I
00125       COMPLEX            EI
00126 *     ..
00127 *     .. External Subroutines ..
00128       EXTERNAL           CAXPY, CCOPY, CGEMM, CGEMV, CLACPY,
00129      $                   CLARFG, CSCAL, CTRMM, CTRMV, CLACGV
00130 *     ..
00131 *     .. Intrinsic Functions ..
00132       INTRINSIC          MIN
00133 *     ..
00134 *     .. Executable Statements ..
00135 *
00136 *     Quick return if possible
00137 *
00138       IF( N.LE.1 )
00139      $   RETURN
00140 *
00141       DO 10 I = 1, NB
00142          IF( I.GT.1 ) THEN
00143 *
00144 *           Update A(K+1:N,I)
00145 *
00146 *           Update I-th column of A - Y * V'
00147 *
00148             CALL CLACGV( I-1, A( K+I-1, 1 ), LDA ) 
00149             CALL CGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
00150      $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
00151             CALL CLACGV( I-1, A( K+I-1, 1 ), LDA ) 
00152 *
00153 *           Apply I - V * T' * V' to this column (call it b) from the
00154 *           left, using the last column of T as workspace
00155 *
00156 *           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
00157 *                    ( V2 )             ( b2 )
00158 *
00159 *           where V1 is unit lower triangular
00160 *
00161 *           w := V1' * b1
00162 *
00163             CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
00164             CALL CTRMV( 'Lower', 'Conjugate transpose', 'UNIT', 
00165      $                  I-1, A( K+1, 1 ),
00166      $                  LDA, T( 1, NB ), 1 )
00167 *
00168 *           w := w + V2'*b2
00169 *
00170             CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, 
00171      $                  ONE, A( K+I, 1 ),
00172      $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
00173 *
00174 *           w := T'*w
00175 *
00176             CALL CTRMV( 'Upper', 'Conjugate transpose', 'NON-UNIT', 
00177      $                  I-1, T, LDT,
00178      $                  T( 1, NB ), 1 )
00179 *
00180 *           b2 := b2 - V2*w
00181 *
00182             CALL CGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE, 
00183      $                  A( K+I, 1 ),
00184      $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
00185 *
00186 *           b1 := b1 - V1*w
00187 *
00188             CALL CTRMV( 'Lower', 'NO TRANSPOSE', 
00189      $                  'UNIT', I-1,
00190      $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
00191             CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
00192 *
00193             A( K+I-1, I-1 ) = EI
00194          END IF
00195 *
00196 *        Generate the elementary reflector H(I) to annihilate
00197 *        A(K+I+1:N,I)
00198 *
00199          CALL CLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
00200      $                TAU( I ) )
00201          EI = A( K+I, I )
00202          A( K+I, I ) = ONE
00203 *
00204 *        Compute  Y(K+1:N,I)
00205 *
00206          CALL CGEMV( 'NO TRANSPOSE', N-K, N-K-I+1, 
00207      $               ONE, A( K+1, I+1 ),
00208      $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
00209          CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, 
00210      $               ONE, A( K+I, 1 ), LDA,
00211      $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
00212          CALL CGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, 
00213      $               Y( K+1, 1 ), LDY,
00214      $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
00215          CALL CSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
00216 *
00217 *        Compute T(1:I,I)
00218 *
00219          CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
00220          CALL CTRMV( 'Upper', 'No Transpose', 'NON-UNIT', 
00221      $               I-1, T, LDT,
00222      $               T( 1, I ), 1 )
00223          T( I, I ) = TAU( I )
00224 *
00225    10 CONTINUE
00226       A( K+NB, NB ) = EI
00227 *
00228 *     Compute Y(1:K,1:NB)
00229 *
00230       CALL CLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
00231       CALL CTRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE', 
00232      $            'UNIT', K, NB,
00233      $            ONE, A( K+1, 1 ), LDA, Y, LDY )
00234       IF( N.GT.K+NB )
00235      $   CALL CGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K, 
00236      $               NB, N-K-NB, ONE,
00237      $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
00238      $               LDY )
00239       CALL CTRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE', 
00240      $            'NON-UNIT', K, NB,
00241      $            ONE, T, LDT, Y, LDY )
00242 *
00243       RETURN
00244 *
00245 *     End of CLAHR2
00246 *
00247       END
 All Files Functions