LAPACK 3.3.0

cdrves.f

Go to the documentation of this file.
00001       SUBROUTINE CDRVES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
00002      $                   NOUNIT, A, LDA, H, HT, W, WT, VS, LDVS, RESULT,
00003      $                   WORK, NWORK, RWORK, IWORK, BWORK, INFO )
00004 *
00005 *  -- LAPACK test routine (version 3.1) --
00006 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       INTEGER            INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
00011       REAL               THRESH
00012 *     ..
00013 *     .. Array Arguments ..
00014       LOGICAL            BWORK( * ), DOTYPE( * )
00015       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
00016       REAL               RESULT( 13 ), RWORK( * )
00017       COMPLEX            A( LDA, * ), H( LDA, * ), HT( LDA, * ),
00018      $                   VS( LDVS, * ), W( * ), WORK( * ), WT( * )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *     CDRVES checks the nonsymmetric eigenvalue (Schur form) problem
00025 *     driver CGEES.
00026 *
00027 *     When CDRVES is called, a number of matrix "sizes" ("n's") and a
00028 *     number of matrix "types" are specified.  For each size ("n")
00029 *     and each type of matrix, one matrix will be generated and used
00030 *     to test the nonsymmetric eigenroutines.  For each matrix, 13
00031 *     tests will be performed:
00032 *
00033 *     (1)     0 if T is in Schur form, 1/ulp otherwise
00034 *            (no sorting of eigenvalues)
00035 *
00036 *     (2)     | A - VS T VS' | / ( n |A| ulp )
00037 *
00038 *       Here VS is the matrix of Schur eigenvectors, and T is in Schur
00039 *       form  (no sorting of eigenvalues).
00040 *
00041 *     (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
00042 *
00043 *     (4)     0     if W are eigenvalues of T
00044 *             1/ulp otherwise
00045 *             (no sorting of eigenvalues)
00046 *
00047 *     (5)     0     if T(with VS) = T(without VS),
00048 *             1/ulp otherwise
00049 *             (no sorting of eigenvalues)
00050 *
00051 *     (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),
00052 *             1/ulp otherwise
00053 *             (no sorting of eigenvalues)
00054 *
00055 *     (7)     0 if T is in Schur form, 1/ulp otherwise
00056 *             (with sorting of eigenvalues)
00057 *
00058 *     (8)     | A - VS T VS' | / ( n |A| ulp )
00059 *
00060 *       Here VS is the matrix of Schur eigenvectors, and T is in Schur
00061 *       form  (with sorting of eigenvalues).
00062 *
00063 *     (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
00064 *
00065 *     (10)    0     if W are eigenvalues of T
00066 *             1/ulp otherwise
00067 *             (with sorting of eigenvalues)
00068 *
00069 *     (11)    0     if T(with VS) = T(without VS),
00070 *             1/ulp otherwise
00071 *             (with sorting of eigenvalues)
00072 *
00073 *     (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),
00074 *             1/ulp otherwise
00075 *             (with sorting of eigenvalues)
00076 *
00077 *     (13)    if sorting worked and SDIM is the number of
00078 *             eigenvalues which were SELECTed
00079 *
00080 *     The "sizes" are specified by an array NN(1:NSIZES); the value of
00081 *     each element NN(j) specifies one size.
00082 *     The "types" are specified by a logical array DOTYPE( 1:NTYPES );
00083 *     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
00084 *     Currently, the list of possible types is:
00085 *
00086 *     (1)  The zero matrix.
00087 *     (2)  The identity matrix.
00088 *     (3)  A (transposed) Jordan block, with 1's on the diagonal.
00089 *
00090 *     (4)  A diagonal matrix with evenly spaced entries
00091 *          1, ..., ULP  and random complex angles.
00092 *          (ULP = (first number larger than 1) - 1 )
00093 *     (5)  A diagonal matrix with geometrically spaced entries
00094 *          1, ..., ULP  and random complex angles.
00095 *     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
00096 *          and random complex angles.
00097 *
00098 *     (7)  Same as (4), but multiplied by a constant near
00099 *          the overflow threshold
00100 *     (8)  Same as (4), but multiplied by a constant near
00101 *          the underflow threshold
00102 *
00103 *     (9)  A matrix of the form  U' T U, where U is unitary and
00104 *          T has evenly spaced entries 1, ..., ULP with random
00105 *          complex angles on the diagonal and random O(1) entries in
00106 *          the upper triangle.
00107 *
00108 *     (10) A matrix of the form  U' T U, where U is unitary and
00109 *          T has geometrically spaced entries 1, ..., ULP with random
00110 *          complex angles on the diagonal and random O(1) entries in
00111 *          the upper triangle.
00112 *
00113 *     (11) A matrix of the form  U' T U, where U is orthogonal and
00114 *          T has "clustered" entries 1, ULP,..., ULP with random
00115 *          complex angles on the diagonal and random O(1) entries in
00116 *          the upper triangle.
00117 *
00118 *     (12) A matrix of the form  U' T U, where U is unitary and
00119 *          T has complex eigenvalues randomly chosen from
00120 *          ULP < |z| < 1   and random O(1) entries in the upper
00121 *          triangle.
00122 *
00123 *     (13) A matrix of the form  X' T X, where X has condition
00124 *          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
00125 *          with random complex angles on the diagonal and random O(1)
00126 *          entries in the upper triangle.
00127 *
00128 *     (14) A matrix of the form  X' T X, where X has condition
00129 *          SQRT( ULP ) and T has geometrically spaced entries
00130 *          1, ..., ULP with random complex angles on the diagonal
00131 *          and random O(1) entries in the upper triangle.
00132 *
00133 *     (15) A matrix of the form  X' T X, where X has condition
00134 *          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
00135 *          with random complex angles on the diagonal and random O(1)
00136 *          entries in the upper triangle.
00137 *
00138 *     (16) A matrix of the form  X' T X, where X has condition
00139 *          SQRT( ULP ) and T has complex eigenvalues randomly chosen
00140 *          from ULP < |z| < 1 and random O(1) entries in the upper
00141 *          triangle.
00142 *
00143 *     (17) Same as (16), but multiplied by a constant
00144 *          near the overflow threshold
00145 *     (18) Same as (16), but multiplied by a constant
00146 *          near the underflow threshold
00147 *
00148 *     (19) Nonsymmetric matrix with random entries chosen from (-1,1).
00149 *          If N is at least 4, all entries in first two rows and last
00150 *          row, and first column and last two columns are zero.
00151 *     (20) Same as (19), but multiplied by a constant
00152 *          near the overflow threshold
00153 *     (21) Same as (19), but multiplied by a constant
00154 *          near the underflow threshold
00155 *
00156 *  Arguments
00157 *  =========
00158 *
00159 *  NSIZES  (input) INTEGER
00160 *          The number of sizes of matrices to use.  If it is zero,
00161 *          CDRVES does nothing.  It must be at least zero.
00162 *
00163 *  NN      (input) INTEGER array, dimension (NSIZES)
00164 *          An array containing the sizes to be used for the matrices.
00165 *          Zero values will be skipped.  The values must be at least
00166 *          zero.
00167 *
00168 *  NTYPES  (input) INTEGER
00169 *          The number of elements in DOTYPE.   If it is zero, CDRVES
00170 *          does nothing.  It must be at least zero.  If it is MAXTYP+1
00171 *          and NSIZES is 1, then an additional type, MAXTYP+1 is
00172 *          defined, which is to use whatever matrix is in A.  This
00173 *          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
00174 *          DOTYPE(MAXTYP+1) is .TRUE. .
00175 *
00176 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00177 *          If DOTYPE(j) is .TRUE., then for each size in NN a
00178 *          matrix of that size and of type j will be generated.
00179 *          If NTYPES is smaller than the maximum number of types
00180 *          defined (PARAMETER MAXTYP), then types NTYPES+1 through
00181 *          MAXTYP will not be generated.  If NTYPES is larger
00182 *          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
00183 *          will be ignored.
00184 *
00185 *  ISEED   (input/output) INTEGER array, dimension (4)
00186 *          On entry ISEED specifies the seed of the random number
00187 *          generator. The array elements should be between 0 and 4095;
00188 *          if not they will be reduced mod 4096.  Also, ISEED(4) must
00189 *          be odd.  The random number generator uses a linear
00190 *          congruential sequence limited to small integers, and so
00191 *          should produce machine independent random numbers. The
00192 *          values of ISEED are changed on exit, and can be used in the
00193 *          next call to CDRVES to continue the same random number
00194 *          sequence.
00195 *
00196 *  THRESH  (input) REAL
00197 *          A test will count as "failed" if the "error", computed as
00198 *          described above, exceeds THRESH.  Note that the error
00199 *          is scaled to be O(1), so THRESH should be a reasonably
00200 *          small multiple of 1, e.g., 10 or 100.  In particular,
00201 *          it should not depend on the precision (single vs. double)
00202 *          or the size of the matrix.  It must be at least zero.
00203 *
00204 *  NOUNIT  (input) INTEGER
00205 *          The FORTRAN unit number for printing out error messages
00206 *          (e.g., if a routine returns INFO not equal to 0.)
00207 *
00208 *  A       (workspace) COMPLEX array, dimension (LDA, max(NN))
00209 *          Used to hold the matrix whose eigenvalues are to be
00210 *          computed.  On exit, A contains the last matrix actually used.
00211 *
00212 *  LDA     (input) INTEGER
00213 *          The leading dimension of A, and H. LDA must be at
00214 *          least 1 and at least max( NN ).
00215 *
00216 *  H       (workspace) COMPLEX array, dimension (LDA, max(NN))
00217 *          Another copy of the test matrix A, modified by CGEES.
00218 *
00219 *  HT      (workspace) COMPLEX array, dimension (LDA, max(NN))
00220 *          Yet another copy of the test matrix A, modified by CGEES.
00221 *
00222 *  W       (workspace) COMPLEX array, dimension (max(NN))
00223 *          The computed eigenvalues of A.
00224 *
00225 *  WT      (workspace) COMPLEX array, dimension (max(NN))
00226 *          Like W, this array contains the eigenvalues of A,
00227 *          but those computed when CGEES only computes a partial
00228 *          eigendecomposition, i.e. not Schur vectors
00229 *
00230 *  VS      (workspace) COMPLEX array, dimension (LDVS, max(NN))
00231 *          VS holds the computed Schur vectors.
00232 *
00233 *  LDVS    (input) INTEGER
00234 *          Leading dimension of VS. Must be at least max(1,max(NN)).
00235 *
00236 *  RESULT  (output) REAL array, dimension (13)
00237 *          The values computed by the 13 tests described above.
00238 *          The values are currently limited to 1/ulp, to avoid overflow.
00239 *
00240 *  WORK    (workspace) COMPLEX array, dimension (NWORK)
00241 *
00242 *  NWORK   (input) INTEGER
00243 *          The number of entries in WORK.  This must be at least
00244 *          5*NN(j)+2*NN(j)**2 for all j.
00245 *
00246 *  RWORK   (workspace) REAL array, dimension (max(NN))
00247 *
00248 *  IWORK   (workspace) INTEGER array, dimension (max(NN))
00249 *
00250 *  INFO    (output) INTEGER
00251 *          If 0, then everything ran OK.
00252 *           -1: NSIZES < 0
00253 *           -2: Some NN(j) < 0
00254 *           -3: NTYPES < 0
00255 *           -6: THRESH < 0
00256 *           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
00257 *          -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ).
00258 *          -18: NWORK too small.
00259 *          If  CLATMR, CLATMS, CLATME or CGEES returns an error code,
00260 *              the absolute value of it is returned.
00261 *
00262 *-----------------------------------------------------------------------
00263 *
00264 *     Some Local Variables and Parameters:
00265 *     ---- ----- --------- --- ----------
00266 *     ZERO, ONE       Real 0 and 1.
00267 *     MAXTYP          The number of types defined.
00268 *     NMAX            Largest value in NN.
00269 *     NERRS           The number of tests which have exceeded THRESH
00270 *     COND, CONDS,
00271 *     IMODE           Values to be passed to the matrix generators.
00272 *     ANORM           Norm of A; passed to matrix generators.
00273 *
00274 *     OVFL, UNFL      Overflow and underflow thresholds.
00275 *     ULP, ULPINV     Finest relative precision and its inverse.
00276 *     RTULP, RTULPI   Square roots of the previous 4 values.
00277 *             The following four arrays decode JTYPE:
00278 *     KTYPE(j)        The general type (1-10) for type "j".
00279 *     KMODE(j)        The MODE value to be passed to the matrix
00280 *                     generator for type "j".
00281 *     KMAGN(j)        The order of magnitude ( O(1),
00282 *                     O(overflow^(1/2) ), O(underflow^(1/2) )
00283 *     KCONDS(j)       Select whether CONDS is to be 1 or
00284 *                     1/sqrt(ulp).  (0 means irrelevant.)
00285 *
00286 *  =====================================================================
00287 *
00288 *     .. Parameters ..
00289       COMPLEX            CZERO
00290       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
00291       COMPLEX            CONE
00292       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
00293       REAL               ZERO, ONE
00294       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00295       INTEGER            MAXTYP
00296       PARAMETER          ( MAXTYP = 21 )
00297 *     ..
00298 *     .. Local Scalars ..
00299       LOGICAL            BADNN
00300       CHARACTER          SORT
00301       CHARACTER*3        PATH
00302       INTEGER            I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
00303      $                   JSIZE, JTYPE, KNTEIG, LWORK, MTYPES, N,
00304      $                   NERRS, NFAIL, NMAX, NNWORK, NTEST, NTESTF,
00305      $                   NTESTT, RSUB, SDIM
00306       REAL               ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
00307      $                   ULPINV, UNFL
00308 *     ..
00309 *     .. Local Arrays ..
00310       INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
00311      $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
00312      $                   KTYPE( MAXTYP )
00313       REAL               RES( 2 )
00314 *     ..
00315 *     .. Arrays in Common ..
00316       LOGICAL            SELVAL( 20 )
00317       REAL               SELWI( 20 ), SELWR( 20 )
00318 *     ..
00319 *     .. Scalars in Common ..
00320       INTEGER            SELDIM, SELOPT
00321 *     ..
00322 *     .. Common blocks ..
00323       COMMON             / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
00324 *     ..
00325 *     .. External Functions ..
00326       LOGICAL            CSLECT
00327       REAL               SLAMCH
00328       EXTERNAL           CSLECT, SLAMCH
00329 *     ..
00330 *     .. External Subroutines ..
00331       EXTERNAL           CGEES, CHST01, CLACPY, CLATME, CLATMR, CLATMS,
00332      $                   CLASET, SLABAD, SLASUM, XERBLA
00333 *     ..
00334 *     .. Intrinsic Functions ..
00335       INTRINSIC          ABS, CMPLX, MAX, MIN, SQRT
00336 *     ..
00337 *     .. Data statements ..
00338       DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
00339       DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
00340      $                   3, 1, 2, 3 /
00341       DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
00342      $                   1, 5, 5, 5, 4, 3, 1 /
00343       DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
00344 *     ..
00345 *     .. Executable Statements ..
00346 *
00347       PATH( 1: 1 ) = 'Complex precision'
00348       PATH( 2: 3 ) = 'ES'
00349 *
00350 *     Check for errors
00351 *
00352       NTESTT = 0
00353       NTESTF = 0
00354       INFO = 0
00355       SELOPT = 0
00356 *
00357 *     Important constants
00358 *
00359       BADNN = .FALSE.
00360       NMAX = 0
00361       DO 10 J = 1, NSIZES
00362          NMAX = MAX( NMAX, NN( J ) )
00363          IF( NN( J ).LT.0 )
00364      $      BADNN = .TRUE.
00365    10 CONTINUE
00366 *
00367 *     Check for errors
00368 *
00369       IF( NSIZES.LT.0 ) THEN
00370          INFO = -1
00371       ELSE IF( BADNN ) THEN
00372          INFO = -2
00373       ELSE IF( NTYPES.LT.0 ) THEN
00374          INFO = -3
00375       ELSE IF( THRESH.LT.ZERO ) THEN
00376          INFO = -6
00377       ELSE IF( NOUNIT.LE.0 ) THEN
00378          INFO = -7
00379       ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
00380          INFO = -9
00381       ELSE IF( LDVS.LT.1 .OR. LDVS.LT.NMAX ) THEN
00382          INFO = -15
00383       ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
00384          INFO = -18
00385       END IF
00386 *
00387       IF( INFO.NE.0 ) THEN
00388          CALL XERBLA( 'CDRVES', -INFO )
00389          RETURN
00390       END IF
00391 *
00392 *     Quick return if nothing to do
00393 *
00394       IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
00395      $   RETURN
00396 *
00397 *     More Important constants
00398 *
00399       UNFL = SLAMCH( 'Safe minimum' )
00400       OVFL = ONE / UNFL
00401       CALL SLABAD( UNFL, OVFL )
00402       ULP = SLAMCH( 'Precision' )
00403       ULPINV = ONE / ULP
00404       RTULP = SQRT( ULP )
00405       RTULPI = ONE / RTULP
00406 *
00407 *     Loop over sizes, types
00408 *
00409       NERRS = 0
00410 *
00411       DO 240 JSIZE = 1, NSIZES
00412          N = NN( JSIZE )
00413          IF( NSIZES.NE.1 ) THEN
00414             MTYPES = MIN( MAXTYP, NTYPES )
00415          ELSE
00416             MTYPES = MIN( MAXTYP+1, NTYPES )
00417          END IF
00418 *
00419          DO 230 JTYPE = 1, MTYPES
00420             IF( .NOT.DOTYPE( JTYPE ) )
00421      $         GO TO 230
00422 *
00423 *           Save ISEED in case of an error.
00424 *
00425             DO 20 J = 1, 4
00426                IOLDSD( J ) = ISEED( J )
00427    20       CONTINUE
00428 *
00429 *           Compute "A"
00430 *
00431 *           Control parameters:
00432 *
00433 *           KMAGN  KCONDS  KMODE        KTYPE
00434 *       =1  O(1)   1       clustered 1  zero
00435 *       =2  large  large   clustered 2  identity
00436 *       =3  small          exponential  Jordan
00437 *       =4                 arithmetic   diagonal, (w/ eigenvalues)
00438 *       =5                 random log   symmetric, w/ eigenvalues
00439 *       =6                 random       general, w/ eigenvalues
00440 *       =7                              random diagonal
00441 *       =8                              random symmetric
00442 *       =9                              random general
00443 *       =10                             random triangular
00444 *
00445             IF( MTYPES.GT.MAXTYP )
00446      $         GO TO 90
00447 *
00448             ITYPE = KTYPE( JTYPE )
00449             IMODE = KMODE( JTYPE )
00450 *
00451 *           Compute norm
00452 *
00453             GO TO ( 30, 40, 50 )KMAGN( JTYPE )
00454 *
00455    30       CONTINUE
00456             ANORM = ONE
00457             GO TO 60
00458 *
00459    40       CONTINUE
00460             ANORM = OVFL*ULP
00461             GO TO 60
00462 *
00463    50       CONTINUE
00464             ANORM = UNFL*ULPINV
00465             GO TO 60
00466 *
00467    60       CONTINUE
00468 *
00469             CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
00470             IINFO = 0
00471             COND = ULPINV
00472 *
00473 *           Special Matrices -- Identity & Jordan block
00474 *
00475             IF( ITYPE.EQ.1 ) THEN
00476 *
00477 *              Zero
00478 *
00479                IINFO = 0
00480 *
00481             ELSE IF( ITYPE.EQ.2 ) THEN
00482 *
00483 *              Identity
00484 *
00485                DO 70 JCOL = 1, N
00486                   A( JCOL, JCOL ) = CMPLX( ANORM )
00487    70          CONTINUE
00488 *
00489             ELSE IF( ITYPE.EQ.3 ) THEN
00490 *
00491 *              Jordan Block
00492 *
00493                DO 80 JCOL = 1, N
00494                   A( JCOL, JCOL ) = CMPLX( ANORM )
00495                   IF( JCOL.GT.1 )
00496      $               A( JCOL, JCOL-1 ) = CONE
00497    80          CONTINUE
00498 *
00499             ELSE IF( ITYPE.EQ.4 ) THEN
00500 *
00501 *              Diagonal Matrix, [Eigen]values Specified
00502 *
00503                CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
00504      $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
00505      $                      IINFO )
00506 *
00507             ELSE IF( ITYPE.EQ.5 ) THEN
00508 *
00509 *              Symmetric, eigenvalues specified
00510 *
00511                CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
00512      $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
00513      $                      IINFO )
00514 *
00515             ELSE IF( ITYPE.EQ.6 ) THEN
00516 *
00517 *              General, eigenvalues specified
00518 *
00519                IF( KCONDS( JTYPE ).EQ.1 ) THEN
00520                   CONDS = ONE
00521                ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
00522                   CONDS = RTULPI
00523                ELSE
00524                   CONDS = ZERO
00525                END IF
00526 *
00527                CALL CLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE, ' ',
00528      $                      'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM,
00529      $                      A, LDA, WORK( 2*N+1 ), IINFO )
00530 *
00531             ELSE IF( ITYPE.EQ.7 ) THEN
00532 *
00533 *              Diagonal, random eigenvalues
00534 *
00535                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
00536      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00537      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
00538      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00539 *
00540             ELSE IF( ITYPE.EQ.8 ) THEN
00541 *
00542 *              Symmetric, random eigenvalues
00543 *
00544                CALL CLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE,
00545      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00546      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
00547      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00548 *
00549             ELSE IF( ITYPE.EQ.9 ) THEN
00550 *
00551 *              General, random eigenvalues
00552 *
00553                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
00554      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00555      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
00556      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00557                IF( N.GE.4 ) THEN
00558                   CALL CLASET( 'Full', 2, N, CZERO, CZERO, A, LDA )
00559                   CALL CLASET( 'Full', N-3, 1, CZERO, CZERO, A( 3, 1 ),
00560      $                         LDA )
00561                   CALL CLASET( 'Full', N-3, 2, CZERO, CZERO,
00562      $                         A( 3, N-1 ), LDA )
00563                   CALL CLASET( 'Full', 1, N, CZERO, CZERO, A( N, 1 ),
00564      $                         LDA )
00565                END IF
00566 *
00567             ELSE IF( ITYPE.EQ.10 ) THEN
00568 *
00569 *              Triangular, random eigenvalues
00570 *
00571                CALL CLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE,
00572      $                      'T', 'N', WORK( N+1 ), 1, ONE,
00573      $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
00574      $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
00575 *
00576             ELSE
00577 *
00578                IINFO = 1
00579             END IF
00580 *
00581             IF( IINFO.NE.0 ) THEN
00582                WRITE( NOUNIT, FMT = 9992 )'Generator', IINFO, N, JTYPE,
00583      $            IOLDSD
00584                INFO = ABS( IINFO )
00585                RETURN
00586             END IF
00587 *
00588    90       CONTINUE
00589 *
00590 *           Test for minimal and generous workspace
00591 *
00592             DO 220 IWK = 1, 2
00593                IF( IWK.EQ.1 ) THEN
00594                   NNWORK = 3*N
00595                ELSE
00596                   NNWORK = 5*N + 2*N**2
00597                END IF
00598                NNWORK = MAX( NNWORK, 1 )
00599 *
00600 *              Initialize RESULT
00601 *
00602                DO 100 J = 1, 13
00603                   RESULT( J ) = -ONE
00604   100          CONTINUE
00605 *
00606 *              Test with and without sorting of eigenvalues
00607 *
00608                DO 180 ISORT = 0, 1
00609                   IF( ISORT.EQ.0 ) THEN
00610                      SORT = 'N'
00611                      RSUB = 0
00612                   ELSE
00613                      SORT = 'S'
00614                      RSUB = 6
00615                   END IF
00616 *
00617 *                 Compute Schur form and Schur vectors, and test them
00618 *
00619                   CALL CLACPY( 'F', N, N, A, LDA, H, LDA )
00620                   CALL CGEES( 'V', SORT, CSLECT, N, H, LDA, SDIM, W, VS,
00621      $                        LDVS, WORK, NNWORK, RWORK, BWORK, IINFO )
00622                   IF( IINFO.NE.0 ) THEN
00623                      RESULT( 1+RSUB ) = ULPINV
00624                      WRITE( NOUNIT, FMT = 9992 )'CGEES1', IINFO, N,
00625      $                  JTYPE, IOLDSD
00626                      INFO = ABS( IINFO )
00627                      GO TO 190
00628                   END IF
00629 *
00630 *                 Do Test (1) or Test (7)
00631 *
00632                   RESULT( 1+RSUB ) = ZERO
00633                   DO 120 J = 1, N - 1
00634                      DO 110 I = J + 1, N
00635                         IF( H( I, J ).NE.ZERO )
00636      $                     RESULT( 1+RSUB ) = ULPINV
00637   110                CONTINUE
00638   120             CONTINUE
00639 *
00640 *                 Do Tests (2) and (3) or Tests (8) and (9)
00641 *
00642                   LWORK = MAX( 1, 2*N*N )
00643                   CALL CHST01( N, 1, N, A, LDA, H, LDA, VS, LDVS, WORK,
00644      $                         LWORK, RWORK, RES )
00645                   RESULT( 2+RSUB ) = RES( 1 )
00646                   RESULT( 3+RSUB ) = RES( 2 )
00647 *
00648 *                 Do Test (4) or Test (10)
00649 *
00650                   RESULT( 4+RSUB ) = ZERO
00651                   DO 130 I = 1, N
00652                      IF( H( I, I ).NE.W( I ) )
00653      $                  RESULT( 4+RSUB ) = ULPINV
00654   130             CONTINUE
00655 *
00656 *                 Do Test (5) or Test (11)
00657 *
00658                   CALL CLACPY( 'F', N, N, A, LDA, HT, LDA )
00659                   CALL CGEES( 'N', SORT, CSLECT, N, HT, LDA, SDIM, WT,
00660      $                        VS, LDVS, WORK, NNWORK, RWORK, BWORK,
00661      $                        IINFO )
00662                   IF( IINFO.NE.0 ) THEN
00663                      RESULT( 5+RSUB ) = ULPINV
00664                      WRITE( NOUNIT, FMT = 9992 )'CGEES2', IINFO, N,
00665      $                  JTYPE, IOLDSD
00666                      INFO = ABS( IINFO )
00667                      GO TO 190
00668                   END IF
00669 *
00670                   RESULT( 5+RSUB ) = ZERO
00671                   DO 150 J = 1, N
00672                      DO 140 I = 1, N
00673                         IF( H( I, J ).NE.HT( I, J ) )
00674      $                     RESULT( 5+RSUB ) = ULPINV
00675   140                CONTINUE
00676   150             CONTINUE
00677 *
00678 *                 Do Test (6) or Test (12)
00679 *
00680                   RESULT( 6+RSUB ) = ZERO
00681                   DO 160 I = 1, N
00682                      IF( W( I ).NE.WT( I ) )
00683      $                  RESULT( 6+RSUB ) = ULPINV
00684   160             CONTINUE
00685 *
00686 *                 Do Test (13)
00687 *
00688                   IF( ISORT.EQ.1 ) THEN
00689                      RESULT( 13 ) = ZERO
00690                      KNTEIG = 0
00691                      DO 170 I = 1, N
00692                         IF( CSLECT( W( I ) ) )
00693      $                     KNTEIG = KNTEIG + 1
00694                         IF( I.LT.N ) THEN
00695                            IF( CSLECT( W( I+1 ) ) .AND.
00696      $                         ( .NOT.CSLECT( W( I ) ) ) )RESULT( 13 )
00697      $                         = ULPINV
00698                         END IF
00699   170                CONTINUE
00700                      IF( SDIM.NE.KNTEIG )
00701      $                  RESULT( 13 ) = ULPINV
00702                   END IF
00703 *
00704   180          CONTINUE
00705 *
00706 *              End of Loop -- Check for RESULT(j) > THRESH
00707 *
00708   190          CONTINUE
00709 *
00710                NTEST = 0
00711                NFAIL = 0
00712                DO 200 J = 1, 13
00713                   IF( RESULT( J ).GE.ZERO )
00714      $               NTEST = NTEST + 1
00715                   IF( RESULT( J ).GE.THRESH )
00716      $               NFAIL = NFAIL + 1
00717   200          CONTINUE
00718 *
00719                IF( NFAIL.GT.0 )
00720      $            NTESTF = NTESTF + 1
00721                IF( NTESTF.EQ.1 ) THEN
00722                   WRITE( NOUNIT, FMT = 9999 )PATH
00723                   WRITE( NOUNIT, FMT = 9998 )
00724                   WRITE( NOUNIT, FMT = 9997 )
00725                   WRITE( NOUNIT, FMT = 9996 )
00726                   WRITE( NOUNIT, FMT = 9995 )THRESH
00727                   WRITE( NOUNIT, FMT = 9994 )
00728                   NTESTF = 2
00729                END IF
00730 *
00731                DO 210 J = 1, 13
00732                   IF( RESULT( J ).GE.THRESH ) THEN
00733                      WRITE( NOUNIT, FMT = 9993 )N, IWK, IOLDSD, JTYPE,
00734      $                  J, RESULT( J )
00735                   END IF
00736   210          CONTINUE
00737 *
00738                NERRS = NERRS + NFAIL
00739                NTESTT = NTESTT + NTEST
00740 *
00741   220       CONTINUE
00742   230    CONTINUE
00743   240 CONTINUE
00744 *
00745 *     Summary
00746 *
00747       CALL SLASUM( PATH, NOUNIT, NERRS, NTESTT )
00748 *
00749  9999 FORMAT( / 1X, A3, ' -- Complex Schur Form Decomposition Driver',
00750      $      / ' Matrix types (see CDRVES for details): ' )
00751 *
00752  9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
00753      $      '           ', '  5=Diagonal: geometr. spaced entries.',
00754      $      / '  2=Identity matrix.                    ', '  6=Diagona',
00755      $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
00756      $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
00757      $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
00758      $      'mall, evenly spaced.' )
00759  9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
00760      $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
00761      $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
00762      $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
00763      $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
00764      $      'lex ', A6, / ' 12=Well-cond., random complex ', A6, '   ',
00765      $      ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi',
00766      $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
00767      $      ' complx ', A4 )
00768  9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
00769      $      'with small random entries.', / ' 20=Matrix with large ran',
00770      $      'dom entries.   ', / )
00771  9995 FORMAT( ' Tests performed with test threshold =', F8.2,
00772      $      / ' ( A denotes A on input and T denotes A on output)',
00773      $      / / ' 1 = 0 if T in Schur form (no sort), ',
00774      $      '  1/ulp otherwise', /
00775      $      ' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
00776      $      / ' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ',
00777      $      / ' 4 = 0 if W are eigenvalues of T (no sort),',
00778      $      '  1/ulp otherwise', /
00779      $      ' 5 = 0 if T same no matter if VS computed (no sort),',
00780      $      '  1/ulp otherwise', /
00781      $      ' 6 = 0 if W same no matter if VS computed (no sort)',
00782      $      ',  1/ulp otherwise' )
00783  9994 FORMAT( ' 7 = 0 if T in Schur form (sort), ', '  1/ulp otherwise',
00784      $      / ' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
00785      $      / ' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
00786      $      / ' 10 = 0 if W are eigenvalues of T (sort),',
00787      $      '  1/ulp otherwise', /
00788      $      ' 11 = 0 if T same no matter if VS computed (sort),',
00789      $      '  1/ulp otherwise', /
00790      $      ' 12 = 0 if W same no matter if VS computed (sort),',
00791      $      '  1/ulp otherwise', /
00792      $      ' 13 = 0 if sorting succesful, 1/ulp otherwise', / )
00793  9993 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
00794      $      ' type ', I2, ', test(', I2, ')=', G10.3 )
00795  9992 FORMAT( ' CDRVES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
00796      $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
00797 *
00798       RETURN
00799 *
00800 *     End of CDRVES
00801 *
00802       END
 All Files Functions