LAPACK 3.3.0
|
00001 SUBROUTINE SLAHD2( IOUNIT, PATH ) 00002 * 00003 * -- LAPACK auxiliary test routine (version 2.0) -- 00004 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00005 * November 2006 00006 * 00007 * .. Scalar Arguments .. 00008 CHARACTER*3 PATH 00009 INTEGER IOUNIT 00010 * .. 00011 * 00012 * Purpose 00013 * ======= 00014 * 00015 * SLAHD2 prints header information for the different test paths. 00016 * 00017 * Arguments 00018 * ========= 00019 * 00020 * IOUNIT (input) INTEGER. 00021 * On entry, IOUNIT specifies the unit number to which the 00022 * header information should be printed. 00023 * 00024 * PATH (input) CHARACTER*3. 00025 * On entry, PATH contains the name of the path for which the 00026 * header information is to be printed. Current paths are 00027 * 00028 * SHS, CHS: Non-symmetric eigenproblem. 00029 * SST, CST: Symmetric eigenproblem. 00030 * SSG, CSG: Symmetric Generalized eigenproblem. 00031 * SBD, CBD: Singular Value Decomposition (SVD) 00032 * SBB, CBB: General Banded reduction to bidiagonal form 00033 * 00034 * These paths also are supplied in double precision (replace 00035 * leading S by D and leading C by Z in path names). 00036 * 00037 * ===================================================================== 00038 * 00039 * .. Local Scalars .. 00040 LOGICAL CORZ, SORD 00041 CHARACTER*2 C2 00042 INTEGER J 00043 * .. 00044 * .. External Functions .. 00045 LOGICAL LSAME, LSAMEN 00046 EXTERNAL LSAME, LSAMEN 00047 * .. 00048 * .. Executable Statements .. 00049 * 00050 IF( IOUNIT.LE.0 ) 00051 $ RETURN 00052 SORD = LSAME( PATH, 'S' ) .OR. LSAME( PATH, 'D' ) 00053 CORZ = LSAME( PATH, 'C' ) .OR. LSAME( PATH, 'Z' ) 00054 IF( .NOT.SORD .AND. .NOT.CORZ ) THEN 00055 WRITE( IOUNIT, FMT = 9999 )PATH 00056 END IF 00057 C2 = PATH( 2: 3 ) 00058 * 00059 IF( LSAMEN( 2, C2, 'HS' ) ) THEN 00060 IF( SORD ) THEN 00061 * 00062 * Real Non-symmetric Eigenvalue Problem: 00063 * 00064 WRITE( IOUNIT, FMT = 9998 )PATH 00065 * 00066 * Matrix types 00067 * 00068 WRITE( IOUNIT, FMT = 9988 ) 00069 WRITE( IOUNIT, FMT = 9987 ) 00070 WRITE( IOUNIT, FMT = 9986 )'pairs ', 'pairs ', 'prs.', 00071 $ 'prs.' 00072 WRITE( IOUNIT, FMT = 9985 ) 00073 * 00074 * Tests performed 00075 * 00076 WRITE( IOUNIT, FMT = 9984 )'orthogonal', '''=transpose', 00077 $ ( '''', J = 1, 6 ) 00078 * 00079 ELSE 00080 * 00081 * Complex Non-symmetric Eigenvalue Problem: 00082 * 00083 WRITE( IOUNIT, FMT = 9997 )PATH 00084 * 00085 * Matrix types 00086 * 00087 WRITE( IOUNIT, FMT = 9988 ) 00088 WRITE( IOUNIT, FMT = 9987 ) 00089 WRITE( IOUNIT, FMT = 9986 )'e.vals', 'e.vals', 'e.vs', 00090 $ 'e.vs' 00091 WRITE( IOUNIT, FMT = 9985 ) 00092 * 00093 * Tests performed 00094 * 00095 WRITE( IOUNIT, FMT = 9984 )'unitary', '*=conj.transp.', 00096 $ ( '*', J = 1, 6 ) 00097 END IF 00098 * 00099 ELSE IF( LSAMEN( 2, C2, 'ST' ) ) THEN 00100 * 00101 IF( SORD ) THEN 00102 * 00103 * Real Symmetric Eigenvalue Problem: 00104 * 00105 WRITE( IOUNIT, FMT = 9996 )PATH 00106 * 00107 * Matrix types 00108 * 00109 WRITE( IOUNIT, FMT = 9983 ) 00110 WRITE( IOUNIT, FMT = 9982 ) 00111 WRITE( IOUNIT, FMT = 9981 )'Symmetric' 00112 * 00113 * Tests performed 00114 * 00115 WRITE( IOUNIT, FMT = 9968 ) 00116 * 00117 ELSE 00118 * 00119 * Complex Hermitian Eigenvalue Problem: 00120 * 00121 WRITE( IOUNIT, FMT = 9995 )PATH 00122 * 00123 * Matrix types 00124 * 00125 WRITE( IOUNIT, FMT = 9983 ) 00126 WRITE( IOUNIT, FMT = 9982 ) 00127 WRITE( IOUNIT, FMT = 9981 )'Hermitian' 00128 * 00129 * Tests performed 00130 * 00131 WRITE( IOUNIT, FMT = 9967 ) 00132 END IF 00133 * 00134 ELSE IF( LSAMEN( 2, C2, 'SG' ) ) THEN 00135 * 00136 IF( SORD ) THEN 00137 * 00138 * Real Symmetric Generalized Eigenvalue Problem: 00139 * 00140 WRITE( IOUNIT, FMT = 9992 )PATH 00141 * 00142 * Matrix types 00143 * 00144 WRITE( IOUNIT, FMT = 9980 ) 00145 WRITE( IOUNIT, FMT = 9979 ) 00146 WRITE( IOUNIT, FMT = 9978 )'Symmetric' 00147 * 00148 * Tests performed 00149 * 00150 WRITE( IOUNIT, FMT = 9977 ) 00151 WRITE( IOUNIT, FMT = 9976 ) 00152 * 00153 ELSE 00154 * 00155 * Complex Hermitian Generalized Eigenvalue Problem: 00156 * 00157 WRITE( IOUNIT, FMT = 9991 )PATH 00158 * 00159 * Matrix types 00160 * 00161 WRITE( IOUNIT, FMT = 9980 ) 00162 WRITE( IOUNIT, FMT = 9979 ) 00163 WRITE( IOUNIT, FMT = 9978 )'Hermitian' 00164 * 00165 * Tests performed 00166 * 00167 WRITE( IOUNIT, FMT = 9975 ) 00168 WRITE( IOUNIT, FMT = 9974 ) 00169 * 00170 END IF 00171 * 00172 ELSE IF( LSAMEN( 2, C2, 'BD' ) ) THEN 00173 * 00174 IF( SORD ) THEN 00175 * 00176 * Real Singular Value Decomposition: 00177 * 00178 WRITE( IOUNIT, FMT = 9994 )PATH 00179 * 00180 * Matrix types 00181 * 00182 WRITE( IOUNIT, FMT = 9973 ) 00183 * 00184 * Tests performed 00185 * 00186 WRITE( IOUNIT, FMT = 9972 )'orthogonal' 00187 WRITE( IOUNIT, FMT = 9971 ) 00188 ELSE 00189 * 00190 * Complex Singular Value Decomposition: 00191 * 00192 WRITE( IOUNIT, FMT = 9993 )PATH 00193 * 00194 * Matrix types 00195 * 00196 WRITE( IOUNIT, FMT = 9973 ) 00197 * 00198 * Tests performed 00199 * 00200 WRITE( IOUNIT, FMT = 9972 )'unitary ' 00201 WRITE( IOUNIT, FMT = 9971 ) 00202 END IF 00203 * 00204 ELSE IF( LSAMEN( 2, C2, 'BB' ) ) THEN 00205 * 00206 IF( SORD ) THEN 00207 * 00208 * Real General Band reduction to bidiagonal form: 00209 * 00210 WRITE( IOUNIT, FMT = 9990 )PATH 00211 * 00212 * Matrix types 00213 * 00214 WRITE( IOUNIT, FMT = 9970 ) 00215 * 00216 * Tests performed 00217 * 00218 WRITE( IOUNIT, FMT = 9969 )'orthogonal' 00219 ELSE 00220 * 00221 * Complex Band reduction to bidiagonal form: 00222 * 00223 WRITE( IOUNIT, FMT = 9989 )PATH 00224 * 00225 * Matrix types 00226 * 00227 WRITE( IOUNIT, FMT = 9970 ) 00228 * 00229 * Tests performed 00230 * 00231 WRITE( IOUNIT, FMT = 9969 )'unitary ' 00232 END IF 00233 * 00234 ELSE 00235 * 00236 WRITE( IOUNIT, FMT = 9999 )PATH 00237 RETURN 00238 END IF 00239 * 00240 RETURN 00241 * 00242 9999 FORMAT( 1X, A3, ': no header available' ) 00243 9998 FORMAT( / 1X, A3, ' -- Real Non-symmetric eigenvalue problem' ) 00244 9997 FORMAT( / 1X, A3, ' -- Complex Non-symmetric eigenvalue problem' ) 00245 9996 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' ) 00246 9995 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' ) 00247 9994 FORMAT( / 1X, A3, ' -- Real Singular Value Decomposition' ) 00248 9993 FORMAT( / 1X, A3, ' -- Complex Singular Value Decomposition' ) 00249 9992 FORMAT( / 1X, A3, ' -- Real Symmetric Generalized eigenvalue ', 00250 $ 'problem' ) 00251 9991 FORMAT( / 1X, A3, ' -- Complex Hermitian Generalized eigenvalue ', 00252 $ 'problem' ) 00253 9990 FORMAT( / 1X, A3, ' -- Real Band reduc. to bidiagonal form' ) 00254 9989 FORMAT( / 1X, A3, ' -- Complex Band reduc. to bidiagonal form' ) 00255 * 00256 9988 FORMAT( ' Matrix types (see xCHKHS for details): ' ) 00257 * 00258 9987 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', 00259 $ ' ', ' 5=Diagonal: geometr. spaced entries.', 00260 $ / ' 2=Identity matrix. ', ' 6=Diagona', 00261 $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ', 00262 $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ', 00263 $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s', 00264 $ 'mall, evenly spaced.' ) 00265 9986 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev', 00266 $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e', 00267 $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ', 00268 $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond', 00269 $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp', 00270 $ 'lex ', A6, / ' 12=Well-cond., random complex ', A6, ' ', 00271 $ ' 17=Ill-cond., large rand. complx ', A4, / ' 13=Ill-condi', 00272 $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.', 00273 $ ' complx ', A4 ) 00274 9985 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ', 00275 $ 'with small random entries.', / ' 20=Matrix with large ran', 00276 $ 'dom entries. ' ) 00277 9984 FORMAT( / ' Tests performed: ', '(H is Hessenberg, T is Schur,', 00278 $ ' U and Z are ', A, ',', / 20X, A, ', W is a diagonal matr', 00279 $ 'ix of eigenvalues,', / 20X, 'L and R are the left and rig', 00280 $ 'ht eigenvector matrices)', / ' 1 = | A - U H U', A1, ' |', 00281 $ ' / ( |A| n ulp ) ', ' 2 = | I - U U', A1, ' | / ', 00282 $ '( n ulp )', / ' 3 = | H - Z T Z', A1, ' | / ( |H| n ulp ', 00283 $ ') ', ' 4 = | I - Z Z', A1, ' | / ( n ulp )', 00284 $ / ' 5 = | A - UZ T (UZ)', A1, ' | / ( |A| n ulp ) ', 00285 $ ' 6 = | I - UZ (UZ)', A1, ' | / ( n ulp )', / ' 7 = | T(', 00286 $ 'e.vects.) - T(no e.vects.) | / ( |T| ulp )', / ' 8 = | W', 00287 $ '(e.vects.) - W(no e.vects.) | / ( |W| ulp )', / ' 9 = | ', 00288 $ 'TR - RW | / ( |T| |R| ulp ) ', ' 10 = | LT - WL | / (', 00289 $ ' |T| |L| ulp )', / ' 11= |HX - XW| / (|H| |X| ulp) (inv.', 00290 $ 'it)', ' 12= |YH - WY| / (|H| |Y| ulp) (inv.it)' ) 00291 * 00292 * Symmetric/Hermitian eigenproblem 00293 * 00294 9983 FORMAT( ' Matrix types (see xDRVST for details): ' ) 00295 * 00296 9982 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', 00297 $ ' ', ' 5=Diagonal: clustered entries.', / ' 2=', 00298 $ 'Identity matrix. ', ' 6=Diagonal: lar', 00299 $ 'ge, evenly spaced.', / ' 3=Diagonal: evenly spaced entri', 00300 $ 'es. ', ' 7=Diagonal: small, evenly spaced.', / ' 4=D', 00301 $ 'iagonal: geometr. spaced entries.' ) 00302 9981 FORMAT( ' Dense ', A, ' Matrices:', / ' 8=Evenly spaced eigen', 00303 $ 'vals. ', ' 12=Small, evenly spaced eigenvals.', 00304 $ / ' 9=Geometrically spaced eigenvals. ', ' 13=Matrix ', 00305 $ 'with random O(1) entries.', / ' 10=Clustered eigenvalues.', 00306 $ ' ', ' 14=Matrix with large random entries.', 00307 $ / ' 11=Large, evenly spaced eigenvals. ', ' 15=Matrix ', 00308 $ 'with small random entries.' ) 00309 * 00310 * Symmetric/Hermitian Generalized eigenproblem 00311 * 00312 9980 FORMAT( ' Matrix types (see xDRVSG for details): ' ) 00313 * 00314 9979 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ', 00315 $ ' ', ' 5=Diagonal: clustered entries.', / ' 2=', 00316 $ 'Identity matrix. ', ' 6=Diagonal: lar', 00317 $ 'ge, evenly spaced.', / ' 3=Diagonal: evenly spaced entri', 00318 $ 'es. ', ' 7=Diagonal: small, evenly spaced.', / ' 4=D', 00319 $ 'iagonal: geometr. spaced entries.' ) 00320 9978 FORMAT( ' Dense or Banded ', A, ' Matrices: ', 00321 $ / ' 8=Evenly spaced eigenvals. ', 00322 $ ' 15=Matrix with small random entries.', 00323 $ / ' 9=Geometrically spaced eigenvals. ', 00324 $ ' 16=Evenly spaced eigenvals, KA=1, KB=1.', 00325 $ / ' 10=Clustered eigenvalues. ', 00326 $ ' 17=Evenly spaced eigenvals, KA=2, KB=1.', 00327 $ / ' 11=Large, evenly spaced eigenvals. ', 00328 $ ' 18=Evenly spaced eigenvals, KA=2, KB=2.', 00329 $ / ' 12=Small, evenly spaced eigenvals. ', 00330 $ ' 19=Evenly spaced eigenvals, KA=3, KB=1.', 00331 $ / ' 13=Matrix with random O(1) entries. ', 00332 $ ' 20=Evenly spaced eigenvals, KA=3, KB=2.', 00333 $ / ' 14=Matrix with large random entries.', 00334 $ ' 21=Evenly spaced eigenvals, KA=3, KB=3.' ) 00335 9977 FORMAT( / ' Tests performed: ', 00336 $ / '( For each pair (A,B), where A is of the given type ', 00337 $ / ' and B is a random well-conditioned matrix. D is ', 00338 $ / ' diagonal, and Z is orthogonal. )', 00339 $ / ' 1 = SSYGV, with ITYPE=1 and UPLO=''U'':', 00340 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00341 $ / ' 2 = SSPGV, with ITYPE=1 and UPLO=''U'':', 00342 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00343 $ / ' 3 = SSBGV, with ITYPE=1 and UPLO=''U'':', 00344 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00345 $ / ' 4 = SSYGV, with ITYPE=1 and UPLO=''L'':', 00346 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00347 $ / ' 5 = SSPGV, with ITYPE=1 and UPLO=''L'':', 00348 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00349 $ / ' 6 = SSBGV, with ITYPE=1 and UPLO=''L'':', 00350 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ' ) 00351 9976 FORMAT( ' 7 = SSYGV, with ITYPE=2 and UPLO=''U'':', 00352 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00353 $ / ' 8 = SSPGV, with ITYPE=2 and UPLO=''U'':', 00354 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00355 $ / ' 9 = SSPGV, with ITYPE=2 and UPLO=''L'':', 00356 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00357 $ / '10 = SSPGV, with ITYPE=2 and UPLO=''L'':', 00358 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00359 $ / '11 = SSYGV, with ITYPE=3 and UPLO=''U'':', 00360 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', 00361 $ / '12 = SSPGV, with ITYPE=3 and UPLO=''U'':', 00362 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', 00363 $ / '13 = SSYGV, with ITYPE=3 and UPLO=''L'':', 00364 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', 00365 $ / '14 = SSPGV, with ITYPE=3 and UPLO=''L'':', 00366 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ' ) 00367 9975 FORMAT( / ' Tests performed: ', 00368 $ / '( For each pair (A,B), where A is of the given type ', 00369 $ / ' and B is a random well-conditioned matrix. D is ', 00370 $ / ' diagonal, and Z is unitary. )', 00371 $ / ' 1 = CHEGV, with ITYPE=1 and UPLO=''U'':', 00372 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00373 $ / ' 2 = CHPGV, with ITYPE=1 and UPLO=''U'':', 00374 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00375 $ / ' 3 = CHBGV, with ITYPE=1 and UPLO=''U'':', 00376 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00377 $ / ' 4 = CHEGV, with ITYPE=1 and UPLO=''L'':', 00378 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00379 $ / ' 5 = CHPGV, with ITYPE=1 and UPLO=''L'':', 00380 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ', 00381 $ / ' 6 = CHBGV, with ITYPE=1 and UPLO=''L'':', 00382 $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ' ) 00383 9974 FORMAT( ' 7 = CHEGV, with ITYPE=2 and UPLO=''U'':', 00384 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00385 $ / ' 8 = CHPGV, with ITYPE=2 and UPLO=''U'':', 00386 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00387 $ / ' 9 = CHPGV, with ITYPE=2 and UPLO=''L'':', 00388 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00389 $ / '10 = CHPGV, with ITYPE=2 and UPLO=''L'':', 00390 $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ', 00391 $ / '11 = CHEGV, with ITYPE=3 and UPLO=''U'':', 00392 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', 00393 $ / '12 = CHPGV, with ITYPE=3 and UPLO=''U'':', 00394 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', 00395 $ / '13 = CHEGV, with ITYPE=3 and UPLO=''L'':', 00396 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ', 00397 $ / '14 = CHPGV, with ITYPE=3 and UPLO=''L'':', 00398 $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ' ) 00399 * 00400 * Singular Value Decomposition 00401 * 00402 9973 FORMAT( ' Matrix types (see xCHKBD for details):', 00403 $ / ' Diagonal matrices:', / ' 1: Zero', 28X, 00404 $ ' 5: Clustered entries', / ' 2: Identity', 24X, 00405 $ ' 6: Large, evenly spaced entries', 00406 $ / ' 3: Evenly spaced entries', 11X, 00407 $ ' 7: Small, evenly spaced entries', 00408 $ / ' 4: Geometrically spaced entries', 00409 $ / ' General matrices:', / ' 8: Evenly spaced sing. vals.', 00410 $ 7X, '12: Small, evenly spaced sing vals', 00411 $ / ' 9: Geometrically spaced sing vals ', 00412 $ '13: Random, O(1) entries', / ' 10: Clustered sing. vals.', 00413 $ 11X, '14: Random, scaled near overflow', 00414 $ / ' 11: Large, evenly spaced sing vals ', 00415 $ '15: Random, scaled near underflow' ) 00416 * 00417 9972 FORMAT( / ' Test ratios: ', 00418 $ '(B: bidiagonal, S: diagonal, Q, P, U, and V: ', A10, / 16X, 00419 $ 'X: m x nrhs, Y = Q'' X, and Z = U'' Y)', 00420 $ / ' 1: norm( A - Q B P'' ) / ( norm(A) max(m,n) ulp )', 00421 $ / ' 2: norm( I - Q'' Q ) / ( m ulp )', 00422 $ / ' 3: norm( I - P'' P ) / ( n ulp )', 00423 $ / ' 4: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )', / 00424 $ ' 5: norm( Y - U Z ) / ( norm(Z) max(min(m,n),k) ulp )' 00425 $ , / ' 6: norm( I - U'' U ) / ( min(m,n) ulp )', 00426 $ / ' 7: norm( I - V'' V ) / ( min(m,n) ulp )' ) 00427 9971 FORMAT( ' 8: Test ordering of S (0 if nondecreasing, 1/ulp ', 00428 $ ' otherwise)', / 00429 $ ' 9: norm( S - S2 ) / ( norm(S) ulp ),', 00430 $ ' where S2 is computed', / 44X, 00431 $ 'without computing U and V''', 00432 $ / ' 10: Sturm sequence test ', 00433 $ '(0 if sing. vals of B within THRESH of S)', 00434 $ / ' 11: norm( A - (QU) S (V'' P'') ) / ', 00435 $ '( norm(A) max(m,n) ulp )', / 00436 $ ' 12: norm( X - (QU) Z ) / ( |X| max(M,k) ulp )', 00437 $ / ' 13: norm( I - (QU)''(QU) ) / ( M ulp )', 00438 $ / ' 14: norm( I - (V'' P'') (P V) ) / ( N ulp )' ) 00439 * 00440 * Band reduction to bidiagonal form 00441 * 00442 9970 FORMAT( ' Matrix types (see xCHKBB for details):', 00443 $ / ' Diagonal matrices:', / ' 1: Zero', 28X, 00444 $ ' 5: Clustered entries', / ' 2: Identity', 24X, 00445 $ ' 6: Large, evenly spaced entries', 00446 $ / ' 3: Evenly spaced entries', 11X, 00447 $ ' 7: Small, evenly spaced entries', 00448 $ / ' 4: Geometrically spaced entries', 00449 $ / ' General matrices:', / ' 8: Evenly spaced sing. vals.', 00450 $ 7X, '12: Small, evenly spaced sing vals', 00451 $ / ' 9: Geometrically spaced sing vals ', 00452 $ '13: Random, O(1) entries', / ' 10: Clustered sing. vals.', 00453 $ 11X, '14: Random, scaled near overflow', 00454 $ / ' 11: Large, evenly spaced sing vals ', 00455 $ '15: Random, scaled near underflow' ) 00456 * 00457 9969 FORMAT( / ' Test ratios: ', '(B: upper bidiagonal, Q and P: ', 00458 $ A10, / 16X, 'C: m x nrhs, PT = P'', Y = Q'' C)', 00459 $ / ' 1: norm( A - Q B PT ) / ( norm(A) max(m,n) ulp )', 00460 $ / ' 2: norm( I - Q'' Q ) / ( m ulp )', 00461 $ / ' 3: norm( I - PT PT'' ) / ( n ulp )', 00462 $ / ' 4: norm( Y - Q'' C ) / ( norm(Y) max(m,nrhs) ulp )' ) 00463 9968 FORMAT( / ' Tests performed: See sdrvst.f' ) 00464 9967 FORMAT( / ' Tests performed: See cdrvst.f' ) 00465 * 00466 * End of SLAHD2 00467 * 00468 END