LAPACK 3.3.0

zdrvhe.f

Go to the documentation of this file.
00001       SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00002      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00003      $                   NOUT )
00004 *
00005 *  -- LAPACK test routine (version 3.1) --
00006 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       LOGICAL            TSTERR
00011       INTEGER            NMAX, NN, NOUT, NRHS
00012       DOUBLE PRECISION   THRESH
00013 *     ..
00014 *     .. Array Arguments ..
00015       LOGICAL            DOTYPE( * )
00016       INTEGER            IWORK( * ), NVAL( * )
00017       DOUBLE PRECISION   RWORK( * )
00018       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00019      $                   WORK( * ), X( * ), XACT( * )
00020 *     ..
00021 *
00022 *  Purpose
00023 *  =======
00024 *
00025 *  ZDRVHE tests the driver routines ZHESV and -SVX.
00026 *
00027 *  Arguments
00028 *  =========
00029 *
00030 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00031 *          The matrix types to be used for testing.  Matrices of type j
00032 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00033 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00034 *
00035 *  NN      (input) INTEGER
00036 *          The number of values of N contained in the vector NVAL.
00037 *
00038 *  NVAL    (input) INTEGER array, dimension (NN)
00039 *          The values of the matrix dimension N.
00040 *
00041 *  NRHS    (input) INTEGER
00042 *          The number of right hand side vectors to be generated for
00043 *          each linear system.
00044 *
00045 *  THRESH  (input) DOUBLE PRECISION
00046 *          The threshold value for the test ratios.  A result is
00047 *          included in the output file if RESULT >= THRESH.  To have
00048 *          every test ratio printed, use THRESH = 0.
00049 *
00050 *  TSTERR  (input) LOGICAL
00051 *          Flag that indicates whether error exits are to be tested.
00052 *
00053 *  NMAX    (input) INTEGER
00054 *          The maximum value permitted for N, used in dimensioning the
00055 *          work arrays.
00056 *
00057 *  A       (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
00058 *
00059 *  AFAC    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
00060 *
00061 *  AINV    (workspace) COMPLEX*16 array, dimension (NMAX*NMAX)
00062 *
00063 *  B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
00064 *
00065 *  X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
00066 *
00067 *  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)
00068 *
00069 *  WORK    (workspace) COMPLEX*16 array, dimension
00070 *                      (NMAX*max(2,NRHS))
00071 *
00072 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
00073 *
00074 *  IWORK   (workspace) INTEGER array, dimension (NMAX)
00075 *
00076 *  NOUT    (input) INTEGER
00077 *          The unit number for output.
00078 *
00079 *  =====================================================================
00080 *
00081 *     .. Parameters ..
00082       DOUBLE PRECISION   ONE, ZERO
00083       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00084       INTEGER            NTYPES, NTESTS
00085       PARAMETER          ( NTYPES = 10, NTESTS = 6 )
00086       INTEGER            NFACT
00087       PARAMETER          ( NFACT = 2 )
00088 *     ..
00089 *     .. Local Scalars ..
00090       LOGICAL            ZEROT
00091       CHARACTER          DIST, FACT, TYPE, UPLO, XTYPE
00092       CHARACTER*3        PATH
00093       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00094      $                   IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
00095      $                   NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
00096       DOUBLE PRECISION   AINVNM, ANORM, CNDNUM, RCOND, RCONDC
00097 *     ..
00098 *     .. Local Arrays ..
00099       CHARACTER          FACTS( NFACT ), UPLOS( 2 )
00100       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00101       DOUBLE PRECISION   RESULT( NTESTS )
00102 *     ..
00103 *     .. External Functions ..
00104       DOUBLE PRECISION   DGET06, ZLANHE
00105       EXTERNAL           DGET06, ZLANHE
00106 *     ..
00107 *     .. External Subroutines ..
00108       EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
00109      $                   ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI, ZLACPY,
00110      $                   ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02,
00111      $                   ZPOT05
00112 *     ..
00113 *     .. Scalars in Common ..
00114       LOGICAL            LERR, OK
00115       CHARACTER*32       SRNAMT
00116       INTEGER            INFOT, NUNIT
00117 *     ..
00118 *     .. Common blocks ..
00119       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00120       COMMON             / SRNAMC / SRNAMT
00121 *     ..
00122 *     .. Intrinsic Functions ..
00123       INTRINSIC          DCMPLX, MAX, MIN
00124 *     ..
00125 *     .. Data statements ..
00126       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00127       DATA               UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
00128 *     ..
00129 *     .. Executable Statements ..
00130 *
00131 *     Initialize constants and the random number seed.
00132 *
00133       PATH( 1: 1 ) = 'Z'
00134       PATH( 2: 3 ) = 'HE'
00135       NRUN = 0
00136       NFAIL = 0
00137       NERRS = 0
00138       DO 10 I = 1, 4
00139          ISEED( I ) = ISEEDY( I )
00140    10 CONTINUE
00141       LWORK = MAX( 2*NMAX, NMAX*NRHS )
00142 *
00143 *     Test the error exits
00144 *
00145       IF( TSTERR )
00146      $   CALL ZERRVX( PATH, NOUT )
00147       INFOT = 0
00148 *
00149 *     Set the block size and minimum block size for testing.
00150 *
00151       NB = 1
00152       NBMIN = 2
00153       CALL XLAENV( 1, NB )
00154       CALL XLAENV( 2, NBMIN )
00155 *
00156 *     Do for each value of N in NVAL
00157 *
00158       DO 180 IN = 1, NN
00159          N = NVAL( IN )
00160          LDA = MAX( N, 1 )
00161          XTYPE = 'N'
00162          NIMAT = NTYPES
00163          IF( N.LE.0 )
00164      $      NIMAT = 1
00165 *
00166          DO 170 IMAT = 1, NIMAT
00167 *
00168 *           Do the tests only if DOTYPE( IMAT ) is true.
00169 *
00170             IF( .NOT.DOTYPE( IMAT ) )
00171      $         GO TO 170
00172 *
00173 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00174 *
00175             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00176             IF( ZEROT .AND. N.LT.IMAT-2 )
00177      $         GO TO 170
00178 *
00179 *           Do first for UPLO = 'U', then for UPLO = 'L'
00180 *
00181             DO 160 IUPLO = 1, 2
00182                UPLO = UPLOS( IUPLO )
00183 *
00184 *              Set up parameters with ZLATB4 and generate a test matrix
00185 *              with ZLATMS.
00186 *
00187                CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
00188      $                      CNDNUM, DIST )
00189 *
00190                SRNAMT = 'ZLATMS'
00191                CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00192      $                      CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
00193      $                      INFO )
00194 *
00195 *              Check error code from ZLATMS.
00196 *
00197                IF( INFO.NE.0 ) THEN
00198                   CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
00199      $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
00200                   GO TO 160
00201                END IF
00202 *
00203 *              For types 3-6, zero one or more rows and columns of the
00204 *              matrix to test that INFO is returned correctly.
00205 *
00206                IF( ZEROT ) THEN
00207                   IF( IMAT.EQ.3 ) THEN
00208                      IZERO = 1
00209                   ELSE IF( IMAT.EQ.4 ) THEN
00210                      IZERO = N
00211                   ELSE
00212                      IZERO = N / 2 + 1
00213                   END IF
00214 *
00215                   IF( IMAT.LT.6 ) THEN
00216 *
00217 *                    Set row and column IZERO to zero.
00218 *
00219                      IF( IUPLO.EQ.1 ) THEN
00220                         IOFF = ( IZERO-1 )*LDA
00221                         DO 20 I = 1, IZERO - 1
00222                            A( IOFF+I ) = ZERO
00223    20                   CONTINUE
00224                         IOFF = IOFF + IZERO
00225                         DO 30 I = IZERO, N
00226                            A( IOFF ) = ZERO
00227                            IOFF = IOFF + LDA
00228    30                   CONTINUE
00229                      ELSE
00230                         IOFF = IZERO
00231                         DO 40 I = 1, IZERO - 1
00232                            A( IOFF ) = ZERO
00233                            IOFF = IOFF + LDA
00234    40                   CONTINUE
00235                         IOFF = IOFF - IZERO
00236                         DO 50 I = IZERO, N
00237                            A( IOFF+I ) = ZERO
00238    50                   CONTINUE
00239                      END IF
00240                   ELSE
00241                      IOFF = 0
00242                      IF( IUPLO.EQ.1 ) THEN
00243 *
00244 *                       Set the first IZERO rows and columns to zero.
00245 *
00246                         DO 70 J = 1, N
00247                            I2 = MIN( J, IZERO )
00248                            DO 60 I = 1, I2
00249                               A( IOFF+I ) = ZERO
00250    60                      CONTINUE
00251                            IOFF = IOFF + LDA
00252    70                   CONTINUE
00253                      ELSE
00254 *
00255 *                       Set the last IZERO rows and columns to zero.
00256 *
00257                         DO 90 J = 1, N
00258                            I1 = MAX( J, IZERO )
00259                            DO 80 I = I1, N
00260                               A( IOFF+I ) = ZERO
00261    80                      CONTINUE
00262                            IOFF = IOFF + LDA
00263    90                   CONTINUE
00264                      END IF
00265                   END IF
00266                ELSE
00267                   IZERO = 0
00268                END IF
00269 *
00270 *              Set the imaginary part of the diagonals.
00271 *
00272                CALL ZLAIPD( N, A, LDA+1, 0 )
00273 *
00274                DO 150 IFACT = 1, NFACT
00275 *
00276 *                 Do first for FACT = 'F', then for other values.
00277 *
00278                   FACT = FACTS( IFACT )
00279 *
00280 *                 Compute the condition number for comparison with
00281 *                 the value returned by ZHESVX.
00282 *
00283                   IF( ZEROT ) THEN
00284                      IF( IFACT.EQ.1 )
00285      $                  GO TO 150
00286                      RCONDC = ZERO
00287 *
00288                   ELSE IF( IFACT.EQ.1 ) THEN
00289 *
00290 *                    Compute the 1-norm of A.
00291 *
00292                      ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
00293 *
00294 *                    Factor the matrix A.
00295 *
00296                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00297                      CALL ZHETRF( UPLO, N, AFAC, LDA, IWORK, WORK,
00298      $                            LWORK, INFO )
00299 *
00300 *                    Compute inv(A) and take its norm.
00301 *
00302                      CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
00303                      CALL ZHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
00304      $                            INFO )
00305                      AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK )
00306 *
00307 *                    Compute the 1-norm condition number of A.
00308 *
00309                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00310                         RCONDC = ONE
00311                      ELSE
00312                         RCONDC = ( ONE / ANORM ) / AINVNM
00313                      END IF
00314                   END IF
00315 *
00316 *                 Form an exact solution and set the right hand side.
00317 *
00318                   SRNAMT = 'ZLARHS'
00319                   CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00320      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
00321      $                         INFO )
00322                   XTYPE = 'C'
00323 *
00324 *                 --- Test ZHESV  ---
00325 *
00326                   IF( IFACT.EQ.2 ) THEN
00327                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00328                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00329 *
00330 *                    Factor the matrix and solve the system using ZHESV.
00331 *
00332                      SRNAMT = 'ZHESV '
00333                      CALL ZHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00334      $                           LDA, WORK, LWORK, INFO )
00335 *
00336 *                    Adjust the expected value of INFO to account for
00337 *                    pivoting.
00338 *
00339                      K = IZERO
00340                      IF( K.GT.0 ) THEN
00341   100                   CONTINUE
00342                         IF( IWORK( K ).LT.0 ) THEN
00343                            IF( IWORK( K ).NE.-K ) THEN
00344                               K = -IWORK( K )
00345                               GO TO 100
00346                            END IF
00347                         ELSE IF( IWORK( K ).NE.K ) THEN
00348                            K = IWORK( K )
00349                            GO TO 100
00350                         END IF
00351                      END IF
00352 *
00353 *                    Check error code from ZHESV .
00354 *
00355                      IF( INFO.NE.K ) THEN
00356                         CALL ALAERH( PATH, 'ZHESV ', INFO, K, UPLO, N,
00357      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00358      $                               NERRS, NOUT )
00359                         GO TO 120
00360                      ELSE IF( INFO.NE.0 ) THEN
00361                         GO TO 120
00362                      END IF
00363 *
00364 *                    Reconstruct matrix from factors and compute
00365 *                    residual.
00366 *
00367                      CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00368      $                            AINV, LDA, RWORK, RESULT( 1 ) )
00369 *
00370 *                    Compute residual of the computed solution.
00371 *
00372                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00373                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00374      $                            LDA, RWORK, RESULT( 2 ) )
00375 *
00376 *                    Check solution from generated exact solution.
00377 *
00378                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00379      $                            RESULT( 3 ) )
00380                      NT = 3
00381 *
00382 *                    Print information about the tests that did not pass
00383 *                    the threshold.
00384 *
00385                      DO 110 K = 1, NT
00386                         IF( RESULT( K ).GE.THRESH ) THEN
00387                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00388      $                        CALL ALADHD( NOUT, PATH )
00389                            WRITE( NOUT, FMT = 9999 )'ZHESV ', UPLO, N,
00390      $                        IMAT, K, RESULT( K )
00391                            NFAIL = NFAIL + 1
00392                         END IF
00393   110                CONTINUE
00394                      NRUN = NRUN + NT
00395   120                CONTINUE
00396                   END IF
00397 *
00398 *                 --- Test ZHESVX ---
00399 *
00400                   IF( IFACT.EQ.2 )
00401      $               CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ),
00402      $                            DCMPLX( ZERO ), AFAC, LDA )
00403                   CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
00404      $                         DCMPLX( ZERO ), X, LDA )
00405 *
00406 *                 Solve the system and compute the condition number and
00407 *                 error bounds using ZHESVX.
00408 *
00409                   SRNAMT = 'ZHESVX'
00410                   CALL ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
00411      $                         IWORK, B, LDA, X, LDA, RCOND, RWORK,
00412      $                         RWORK( NRHS+1 ), WORK, LWORK,
00413      $                         RWORK( 2*NRHS+1 ), INFO )
00414 *
00415 *                 Adjust the expected value of INFO to account for
00416 *                 pivoting.
00417 *
00418                   K = IZERO
00419                   IF( K.GT.0 ) THEN
00420   130                CONTINUE
00421                      IF( IWORK( K ).LT.0 ) THEN
00422                         IF( IWORK( K ).NE.-K ) THEN
00423                            K = -IWORK( K )
00424                            GO TO 130
00425                         END IF
00426                      ELSE IF( IWORK( K ).NE.K ) THEN
00427                         K = IWORK( K )
00428                         GO TO 130
00429                      END IF
00430                   END IF
00431 *
00432 *                 Check the error code from ZHESVX.
00433 *
00434                   IF( INFO.NE.K ) THEN
00435                      CALL ALAERH( PATH, 'ZHESVX', INFO, K, FACT // UPLO,
00436      $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
00437      $                            NERRS, NOUT )
00438                      GO TO 150
00439                   END IF
00440 *
00441                   IF( INFO.EQ.0 ) THEN
00442                      IF( IFACT.GE.2 ) THEN
00443 *
00444 *                       Reconstruct matrix from factors and compute
00445 *                       residual.
00446 *
00447                         CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00448      $                               AINV, LDA, RWORK( 2*NRHS+1 ),
00449      $                               RESULT( 1 ) )
00450                         K1 = 1
00451                      ELSE
00452                         K1 = 2
00453                      END IF
00454 *
00455 *                    Compute residual of the computed solution.
00456 *
00457                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00458                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00459      $                            LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00460 *
00461 *                    Check solution from generated exact solution.
00462 *
00463                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00464      $                            RESULT( 3 ) )
00465 *
00466 *                    Check the error bounds from iterative refinement.
00467 *
00468                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00469      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00470      $                            RESULT( 4 ) )
00471                   ELSE
00472                      K1 = 6
00473                   END IF
00474 *
00475 *                 Compare RCOND from ZHESVX with the computed value
00476 *                 in RCONDC.
00477 *
00478                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
00479 *
00480 *                 Print information about the tests that did not pass
00481 *                 the threshold.
00482 *
00483                   DO 140 K = K1, 6
00484                      IF( RESULT( K ).GE.THRESH ) THEN
00485                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00486      $                     CALL ALADHD( NOUT, PATH )
00487                         WRITE( NOUT, FMT = 9998 )'ZHESVX', FACT, UPLO,
00488      $                     N, IMAT, K, RESULT( K )
00489                         NFAIL = NFAIL + 1
00490                      END IF
00491   140             CONTINUE
00492                   NRUN = NRUN + 7 - K1
00493 *
00494   150          CONTINUE
00495 *
00496   160       CONTINUE
00497   170    CONTINUE
00498   180 CONTINUE
00499 *
00500 *     Print a summary of the results.
00501 *
00502       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00503 *
00504  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
00505      $      ', test ', I2, ', ratio =', G12.5 )
00506  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
00507      $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
00508       RETURN
00509 *
00510 *     End of ZDRVHE
00511 *
00512       END
 All Files Functions