LAPACK 3.3.0

sspevd.f

Go to the documentation of this file.
00001       SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
00002      $                   IWORK, LIWORK, INFO )
00003 *
00004 *  -- LAPACK driver routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          JOBZ, UPLO
00011       INTEGER            INFO, LDZ, LIWORK, LWORK, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       INTEGER            IWORK( * )
00015       REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  SSPEVD computes all the eigenvalues and, optionally, eigenvectors
00022 *  of a real symmetric matrix A in packed storage. If eigenvectors are
00023 *  desired, it uses a divide and conquer algorithm.
00024 *
00025 *  The divide and conquer algorithm makes very mild assumptions about
00026 *  floating point arithmetic. It will work on machines with a guard
00027 *  digit in add/subtract, or on those binary machines without guard
00028 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
00029 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
00030 *  without guard digits, but we know of none.
00031 *
00032 *  Arguments
00033 *  =========
00034 *
00035 *  JOBZ    (input) CHARACTER*1
00036 *          = 'N':  Compute eigenvalues only;
00037 *          = 'V':  Compute eigenvalues and eigenvectors.
00038 *
00039 *  UPLO    (input) CHARACTER*1
00040 *          = 'U':  Upper triangle of A is stored;
00041 *          = 'L':  Lower triangle of A is stored.
00042 *
00043 *  N       (input) INTEGER
00044 *          The order of the matrix A.  N >= 0.
00045 *
00046 *  AP      (input/output) REAL array, dimension (N*(N+1)/2)
00047 *          On entry, the upper or lower triangle of the symmetric matrix
00048 *          A, packed columnwise in a linear array.  The j-th column of A
00049 *          is stored in the array AP as follows:
00050 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
00051 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
00052 *
00053 *          On exit, AP is overwritten by values generated during the
00054 *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
00055 *          and first superdiagonal of the tridiagonal matrix T overwrite
00056 *          the corresponding elements of A, and if UPLO = 'L', the
00057 *          diagonal and first subdiagonal of T overwrite the
00058 *          corresponding elements of A.
00059 *
00060 *  W       (output) REAL array, dimension (N)
00061 *          If INFO = 0, the eigenvalues in ascending order.
00062 *
00063 *  Z       (output) REAL array, dimension (LDZ, N)
00064 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
00065 *          eigenvectors of the matrix A, with the i-th column of Z
00066 *          holding the eigenvector associated with W(i).
00067 *          If JOBZ = 'N', then Z is not referenced.
00068 *
00069 *  LDZ     (input) INTEGER
00070 *          The leading dimension of the array Z.  LDZ >= 1, and if
00071 *          JOBZ = 'V', LDZ >= max(1,N).
00072 *
00073 *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
00074 *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
00075 *
00076 *  LWORK   (input) INTEGER
00077 *          The dimension of the array WORK.
00078 *          If N <= 1,               LWORK must be at least 1.
00079 *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
00080 *          If JOBZ = 'V' and N > 1, LWORK must be at least
00081 *                                                 1 + 6*N + N**2.
00082 *
00083 *          If LWORK = -1, then a workspace query is assumed; the routine
00084 *          only calculates the required sizes of the WORK and IWORK
00085 *          arrays, returns these values as the first entries of the WORK
00086 *          and IWORK arrays, and no error message related to LWORK or
00087 *          LIWORK is issued by XERBLA.
00088 *
00089 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
00090 *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
00091 *
00092 *  LIWORK  (input) INTEGER
00093 *          The dimension of the array IWORK.
00094 *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
00095 *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
00096 *
00097 *          If LIWORK = -1, then a workspace query is assumed; the
00098 *          routine only calculates the required sizes of the WORK and
00099 *          IWORK arrays, returns these values as the first entries of
00100 *          the WORK and IWORK arrays, and no error message related to
00101 *          LWORK or LIWORK is issued by XERBLA.
00102 *
00103 *  INFO    (output) INTEGER
00104 *          = 0:  successful exit
00105 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00106 *          > 0:  if INFO = i, the algorithm failed to converge; i
00107 *                off-diagonal elements of an intermediate tridiagonal
00108 *                form did not converge to zero.
00109 *
00110 *  =====================================================================
00111 *
00112 *     .. Parameters ..
00113       REAL               ZERO, ONE
00114       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00115 *     ..
00116 *     .. Local Scalars ..
00117       LOGICAL            LQUERY, WANTZ
00118       INTEGER            IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
00119      $                   LLWORK, LWMIN
00120       REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
00121      $                   SMLNUM
00122 *     ..
00123 *     .. External Functions ..
00124       LOGICAL            LSAME
00125       REAL               SLAMCH, SLANSP
00126       EXTERNAL           LSAME, SLAMCH, SLANSP
00127 *     ..
00128 *     .. External Subroutines ..
00129       EXTERNAL           SOPMTR, SSCAL, SSPTRD, SSTEDC, SSTERF, XERBLA
00130 *     ..
00131 *     .. Intrinsic Functions ..
00132       INTRINSIC          SQRT
00133 *     ..
00134 *     .. Executable Statements ..
00135 *
00136 *     Test the input parameters.
00137 *
00138       WANTZ = LSAME( JOBZ, 'V' )
00139       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
00140 *
00141       INFO = 0
00142       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
00143          INFO = -1
00144       ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
00145      $          THEN
00146          INFO = -2
00147       ELSE IF( N.LT.0 ) THEN
00148          INFO = -3
00149       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
00150          INFO = -7
00151       END IF
00152 *
00153       IF( INFO.EQ.0 ) THEN
00154          IF( N.LE.1 ) THEN
00155             LIWMIN = 1
00156             LWMIN = 1
00157          ELSE
00158             IF( WANTZ ) THEN
00159                LIWMIN = 3 + 5*N
00160                LWMIN = 1 + 6*N + N**2
00161             ELSE
00162                LIWMIN = 1
00163                LWMIN = 2*N
00164             END IF
00165          END IF
00166          IWORK( 1 ) = LIWMIN
00167          WORK( 1 ) = LWMIN
00168 *
00169          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
00170             INFO = -9
00171          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
00172             INFO = -11
00173          END IF
00174       END IF
00175 *
00176       IF( INFO.NE.0 ) THEN
00177          CALL XERBLA( 'SSPEVD', -INFO )
00178          RETURN
00179       ELSE IF( LQUERY ) THEN
00180          RETURN 
00181       END IF
00182 *
00183 *     Quick return if possible
00184 *
00185       IF( N.EQ.0 )
00186      $   RETURN 
00187 *
00188       IF( N.EQ.1 ) THEN
00189          W( 1 ) = AP( 1 )
00190          IF( WANTZ )
00191      $      Z( 1, 1 ) = ONE
00192          RETURN 
00193       END IF
00194 *
00195 *     Get machine constants.
00196 *
00197       SAFMIN = SLAMCH( 'Safe minimum' )
00198       EPS = SLAMCH( 'Precision' )
00199       SMLNUM = SAFMIN / EPS
00200       BIGNUM = ONE / SMLNUM
00201       RMIN = SQRT( SMLNUM )
00202       RMAX = SQRT( BIGNUM )
00203 *
00204 *     Scale matrix to allowable range, if necessary.
00205 *
00206       ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
00207       ISCALE = 0
00208       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
00209          ISCALE = 1
00210          SIGMA = RMIN / ANRM
00211       ELSE IF( ANRM.GT.RMAX ) THEN
00212          ISCALE = 1
00213          SIGMA = RMAX / ANRM
00214       END IF
00215       IF( ISCALE.EQ.1 ) THEN
00216          CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
00217       END IF
00218 *
00219 *     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
00220 *
00221       INDE = 1
00222       INDTAU = INDE + N
00223       CALL SSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
00224 *
00225 *     For eigenvalues only, call SSTERF.  For eigenvectors, first call
00226 *     SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
00227 *     tridiagonal matrix, then call SOPMTR to multiply it by the
00228 *     Householder transformations represented in AP.
00229 *
00230       IF( .NOT.WANTZ ) THEN
00231          CALL SSTERF( N, W, WORK( INDE ), INFO )
00232       ELSE
00233          INDWRK = INDTAU + N
00234          LLWORK = LWORK - INDWRK + 1
00235          CALL SSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
00236      $                LLWORK, IWORK, LIWORK, INFO )
00237          CALL SOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
00238      $                WORK( INDWRK ), IINFO )
00239       END IF
00240 *
00241 *     If matrix was scaled, then rescale eigenvalues appropriately.
00242 *
00243       IF( ISCALE.EQ.1 )
00244      $   CALL SSCAL( N, ONE / SIGMA, W, 1 )
00245 *
00246       WORK( 1 ) = LWMIN
00247       IWORK( 1 ) = LIWMIN
00248       RETURN
00249 *
00250 *     End of SSPEVD
00251 *
00252       END
 All Files Functions