LAPACK 3.3.0

sggsvp.f

Go to the documentation of this file.
00001       SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
00002      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
00003      $                   IWORK, TAU, WORK, INFO )
00004 *
00005 *  -- LAPACK routine (version 3.2) --
00006 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00007 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00008 *     November 2006
00009 *
00010 *     .. Scalar Arguments ..
00011       CHARACTER          JOBQ, JOBU, JOBV
00012       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
00013       REAL               TOLA, TOLB
00014 *     ..
00015 *     .. Array Arguments ..
00016       INTEGER            IWORK( * )
00017       REAL               A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
00018      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *  SGGSVP computes orthogonal matrices U, V and Q such that
00025 *
00026 *                   N-K-L  K    L
00027 *   U'*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
00028 *                L ( 0     0   A23 )
00029 *            M-K-L ( 0     0    0  )
00030 *
00031 *                   N-K-L  K    L
00032 *          =     K ( 0    A12  A13 )  if M-K-L < 0;
00033 *              M-K ( 0     0   A23 )
00034 *
00035 *                 N-K-L  K    L
00036 *   V'*B*Q =   L ( 0     0   B13 )
00037 *            P-L ( 0     0    0  )
00038 *
00039 *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
00040 *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
00041 *  otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
00042 *  numerical rank of the (M+P)-by-N matrix (A',B')'.  Z' denotes the
00043 *  transpose of Z.
00044 *
00045 *  This decomposition is the preprocessing step for computing the
00046 *  Generalized Singular Value Decomposition (GSVD), see subroutine
00047 *  SGGSVD.
00048 *
00049 *  Arguments
00050 *  =========
00051 *
00052 *  JOBU    (input) CHARACTER*1
00053 *          = 'U':  Orthogonal matrix U is computed;
00054 *          = 'N':  U is not computed.
00055 *
00056 *  JOBV    (input) CHARACTER*1
00057 *          = 'V':  Orthogonal matrix V is computed;
00058 *          = 'N':  V is not computed.
00059 *
00060 *  JOBQ    (input) CHARACTER*1
00061 *          = 'Q':  Orthogonal matrix Q is computed;
00062 *          = 'N':  Q is not computed.
00063 *
00064 *  M       (input) INTEGER
00065 *          The number of rows of the matrix A.  M >= 0.
00066 *
00067 *  P       (input) INTEGER
00068 *          The number of rows of the matrix B.  P >= 0.
00069 *
00070 *  N       (input) INTEGER
00071 *          The number of columns of the matrices A and B.  N >= 0.
00072 *
00073 *  A       (input/output) REAL array, dimension (LDA,N)
00074 *          On entry, the M-by-N matrix A.
00075 *          On exit, A contains the triangular (or trapezoidal) matrix
00076 *          described in the Purpose section.
00077 *
00078 *  LDA     (input) INTEGER
00079 *          The leading dimension of the array A. LDA >= max(1,M).
00080 *
00081 *  B       (input/output) REAL array, dimension (LDB,N)
00082 *          On entry, the P-by-N matrix B.
00083 *          On exit, B contains the triangular matrix described in
00084 *          the Purpose section.
00085 *
00086 *  LDB     (input) INTEGER
00087 *          The leading dimension of the array B. LDB >= max(1,P).
00088 *
00089 *  TOLA    (input) REAL
00090 *  TOLB    (input) REAL
00091 *          TOLA and TOLB are the thresholds to determine the effective
00092 *          numerical rank of matrix B and a subblock of A. Generally,
00093 *          they are set to
00094 *             TOLA = MAX(M,N)*norm(A)*MACHEPS,
00095 *             TOLB = MAX(P,N)*norm(B)*MACHEPS.
00096 *          The size of TOLA and TOLB may affect the size of backward
00097 *          errors of the decomposition.
00098 *
00099 *  K       (output) INTEGER
00100 *  L       (output) INTEGER
00101 *          On exit, K and L specify the dimension of the subblocks
00102 *          described in Purpose.
00103 *          K + L = effective numerical rank of (A',B')'.
00104 *
00105 *  U       (output) REAL array, dimension (LDU,M)
00106 *          If JOBU = 'U', U contains the orthogonal matrix U.
00107 *          If JOBU = 'N', U is not referenced.
00108 *
00109 *  LDU     (input) INTEGER
00110 *          The leading dimension of the array U. LDU >= max(1,M) if
00111 *          JOBU = 'U'; LDU >= 1 otherwise.
00112 *
00113 *  V       (output) REAL array, dimension (LDV,P)
00114 *          If JOBV = 'V', V contains the orthogonal matrix V.
00115 *          If JOBV = 'N', V is not referenced.
00116 *
00117 *  LDV     (input) INTEGER
00118 *          The leading dimension of the array V. LDV >= max(1,P) if
00119 *          JOBV = 'V'; LDV >= 1 otherwise.
00120 *
00121 *  Q       (output) REAL array, dimension (LDQ,N)
00122 *          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
00123 *          If JOBQ = 'N', Q is not referenced.
00124 *
00125 *  LDQ     (input) INTEGER
00126 *          The leading dimension of the array Q. LDQ >= max(1,N) if
00127 *          JOBQ = 'Q'; LDQ >= 1 otherwise.
00128 *
00129 *  IWORK   (workspace) INTEGER array, dimension (N)
00130 *
00131 *  TAU     (workspace) REAL array, dimension (N)
00132 *
00133 *  WORK    (workspace) REAL array, dimension (max(3*N,M,P))
00134 *
00135 *  INFO    (output) INTEGER
00136 *          = 0:  successful exit
00137 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00138 *
00139 *
00140 *  Further Details
00141 *  ===============
00142 *
00143 *  The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
00144 *  with column pivoting to detect the effective numerical rank of the
00145 *  a matrix. It may be replaced by a better rank determination strategy.
00146 *
00147 *  =====================================================================
00148 *
00149 *     .. Parameters ..
00150       REAL               ZERO, ONE
00151       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
00152 *     ..
00153 *     .. Local Scalars ..
00154       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
00155       INTEGER            I, J
00156 *     ..
00157 *     .. External Functions ..
00158       LOGICAL            LSAME
00159       EXTERNAL           LSAME
00160 *     ..
00161 *     .. External Subroutines ..
00162       EXTERNAL           SGEQPF, SGEQR2, SGERQ2, SLACPY, SLAPMT, SLASET,
00163      $                   SORG2R, SORM2R, SORMR2, XERBLA
00164 *     ..
00165 *     .. Intrinsic Functions ..
00166       INTRINSIC          ABS, MAX, MIN
00167 *     ..
00168 *     .. Executable Statements ..
00169 *
00170 *     Test the input parameters
00171 *
00172       WANTU = LSAME( JOBU, 'U' )
00173       WANTV = LSAME( JOBV, 'V' )
00174       WANTQ = LSAME( JOBQ, 'Q' )
00175       FORWRD = .TRUE.
00176 *
00177       INFO = 0
00178       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
00179          INFO = -1
00180       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
00181          INFO = -2
00182       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
00183          INFO = -3
00184       ELSE IF( M.LT.0 ) THEN
00185          INFO = -4
00186       ELSE IF( P.LT.0 ) THEN
00187          INFO = -5
00188       ELSE IF( N.LT.0 ) THEN
00189          INFO = -6
00190       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
00191          INFO = -8
00192       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
00193          INFO = -10
00194       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
00195          INFO = -16
00196       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
00197          INFO = -18
00198       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
00199          INFO = -20
00200       END IF
00201       IF( INFO.NE.0 ) THEN
00202          CALL XERBLA( 'SGGSVP', -INFO )
00203          RETURN
00204       END IF
00205 *
00206 *     QR with column pivoting of B: B*P = V*( S11 S12 )
00207 *                                           (  0   0  )
00208 *
00209       DO 10 I = 1, N
00210          IWORK( I ) = 0
00211    10 CONTINUE
00212       CALL SGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO )
00213 *
00214 *     Update A := A*P
00215 *
00216       CALL SLAPMT( FORWRD, M, N, A, LDA, IWORK )
00217 *
00218 *     Determine the effective rank of matrix B.
00219 *
00220       L = 0
00221       DO 20 I = 1, MIN( P, N )
00222          IF( ABS( B( I, I ) ).GT.TOLB )
00223      $      L = L + 1
00224    20 CONTINUE
00225 *
00226       IF( WANTV ) THEN
00227 *
00228 *        Copy the details of V, and form V.
00229 *
00230          CALL SLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
00231          IF( P.GT.1 )
00232      $      CALL SLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
00233      $                   LDV )
00234          CALL SORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
00235       END IF
00236 *
00237 *     Clean up B
00238 *
00239       DO 40 J = 1, L - 1
00240          DO 30 I = J + 1, L
00241             B( I, J ) = ZERO
00242    30    CONTINUE
00243    40 CONTINUE
00244       IF( P.GT.L )
00245      $   CALL SLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
00246 *
00247       IF( WANTQ ) THEN
00248 *
00249 *        Set Q = I and Update Q := Q*P
00250 *
00251          CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
00252          CALL SLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
00253       END IF
00254 *
00255       IF( P.GE.L .AND. N.NE.L ) THEN
00256 *
00257 *        RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
00258 *
00259          CALL SGERQ2( L, N, B, LDB, TAU, WORK, INFO )
00260 *
00261 *        Update A := A*Z'
00262 *
00263          CALL SORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
00264      $                LDA, WORK, INFO )
00265 *
00266          IF( WANTQ ) THEN
00267 *
00268 *           Update Q := Q*Z'
00269 *
00270             CALL SORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
00271      $                   LDQ, WORK, INFO )
00272          END IF
00273 *
00274 *        Clean up B
00275 *
00276          CALL SLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
00277          DO 60 J = N - L + 1, N
00278             DO 50 I = J - N + L + 1, L
00279                B( I, J ) = ZERO
00280    50       CONTINUE
00281    60    CONTINUE
00282 *
00283       END IF
00284 *
00285 *     Let              N-L     L
00286 *                A = ( A11    A12 ) M,
00287 *
00288 *     then the following does the complete QR decomposition of A11:
00289 *
00290 *              A11 = U*(  0  T12 )*P1'
00291 *                      (  0   0  )
00292 *
00293       DO 70 I = 1, N - L
00294          IWORK( I ) = 0
00295    70 CONTINUE
00296       CALL SGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO )
00297 *
00298 *     Determine the effective rank of A11
00299 *
00300       K = 0
00301       DO 80 I = 1, MIN( M, N-L )
00302          IF( ABS( A( I, I ) ).GT.TOLA )
00303      $      K = K + 1
00304    80 CONTINUE
00305 *
00306 *     Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N )
00307 *
00308       CALL SORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
00309      $             TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
00310 *
00311       IF( WANTU ) THEN
00312 *
00313 *        Copy the details of U, and form U
00314 *
00315          CALL SLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
00316          IF( M.GT.1 )
00317      $      CALL SLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
00318      $                   LDU )
00319          CALL SORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
00320       END IF
00321 *
00322       IF( WANTQ ) THEN
00323 *
00324 *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
00325 *
00326          CALL SLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
00327       END IF
00328 *
00329 *     Clean up A: set the strictly lower triangular part of
00330 *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
00331 *
00332       DO 100 J = 1, K - 1
00333          DO 90 I = J + 1, K
00334             A( I, J ) = ZERO
00335    90    CONTINUE
00336   100 CONTINUE
00337       IF( M.GT.K )
00338      $   CALL SLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
00339 *
00340       IF( N-L.GT.K ) THEN
00341 *
00342 *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
00343 *
00344          CALL SGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
00345 *
00346          IF( WANTQ ) THEN
00347 *
00348 *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1'
00349 *
00350             CALL SORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
00351      $                   Q, LDQ, WORK, INFO )
00352          END IF
00353 *
00354 *        Clean up A
00355 *
00356          CALL SLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
00357          DO 120 J = N - L - K + 1, N - L
00358             DO 110 I = J - N + L + K + 1, K
00359                A( I, J ) = ZERO
00360   110       CONTINUE
00361   120    CONTINUE
00362 *
00363       END IF
00364 *
00365       IF( M.GT.K ) THEN
00366 *
00367 *        QR factorization of A( K+1:M,N-L+1:N )
00368 *
00369          CALL SGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
00370 *
00371          IF( WANTU ) THEN
00372 *
00373 *           Update U(:,K+1:M) := U(:,K+1:M)*U1
00374 *
00375             CALL SORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
00376      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
00377      $                   WORK, INFO )
00378          END IF
00379 *
00380 *        Clean up
00381 *
00382          DO 140 J = N - L + 1, N
00383             DO 130 I = J - N + K + L + 1, M
00384                A( I, J ) = ZERO
00385   130       CONTINUE
00386   140    CONTINUE
00387 *
00388       END IF
00389 *
00390       RETURN
00391 *
00392 *     End of SGGSVP
00393 *
00394       END
 All Files Functions