LAPACK 3.3.0

cget04.f

Go to the documentation of this file.
00001       SUBROUTINE CGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID )
00002 *
00003 *  -- LAPACK test routine (version 3.1) --
00004 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00005 *     November 2006
00006 *
00007 *     .. Scalar Arguments ..
00008       INTEGER            LDX, LDXACT, N, NRHS
00009       REAL               RCOND, RESID
00010 *     ..
00011 *     .. Array Arguments ..
00012       COMPLEX            X( LDX, * ), XACT( LDXACT, * )
00013 *     ..
00014 *
00015 *  Purpose
00016 *  =======
00017 *
00018 *  CGET04 computes the difference between a computed solution and the
00019 *  true solution to a system of linear equations.
00020 *
00021 *  RESID =  ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
00022 *  where RCOND is the reciprocal of the condition number and EPS is the
00023 *  machine epsilon.
00024 *
00025 *  Arguments
00026 *  =========
00027 *
00028 *  N       (input) INTEGER
00029 *          The number of rows of the matrices X and XACT.  N >= 0.
00030 *
00031 *  NRHS    (input) INTEGER
00032 *          The number of columns of the matrices X and XACT.  NRHS >= 0.
00033 *
00034 *  X       (input) COMPLEX array, dimension (LDX,NRHS)
00035 *          The computed solution vectors.  Each vector is stored as a
00036 *          column of the matrix X.
00037 *
00038 *  LDX     (input) INTEGER
00039 *          The leading dimension of the array X.  LDX >= max(1,N).
00040 *
00041 *  XACT    (input) COMPLEX array, dimension (LDX,NRHS)
00042 *          The exact solution vectors.  Each vector is stored as a
00043 *          column of the matrix XACT.
00044 *
00045 *  LDXACT  (input) INTEGER
00046 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
00047 *
00048 *  RCOND   (input) REAL
00049 *          The reciprocal of the condition number of the coefficient
00050 *          matrix in the system of equations.
00051 *
00052 *  RESID   (output) REAL
00053 *          The maximum over the NRHS solution vectors of
00054 *          ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS )
00055 *
00056 *  =====================================================================
00057 *
00058 *     .. Parameters ..
00059       REAL               ZERO
00060       PARAMETER          ( ZERO = 0.0E+0 )
00061 *     ..
00062 *     .. Local Scalars ..
00063       INTEGER            I, IX, J
00064       REAL               DIFFNM, EPS, XNORM
00065       COMPLEX            ZDUM
00066 *     ..
00067 *     .. External Functions ..
00068       INTEGER            ICAMAX
00069       REAL               SLAMCH
00070       EXTERNAL           ICAMAX, SLAMCH
00071 *     ..
00072 *     .. Intrinsic Functions ..
00073       INTRINSIC          ABS, AIMAG, MAX, REAL
00074 *     ..
00075 *     .. Statement Functions ..
00076       REAL               CABS1
00077 *     ..
00078 *     .. Statement Function definitions ..
00079       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
00080 *     ..
00081 *     .. Executable Statements ..
00082 *
00083 *     Quick exit if N = 0 or NRHS = 0.
00084 *
00085       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
00086          RESID = ZERO
00087          RETURN
00088       END IF
00089 *
00090 *     Exit with RESID = 1/EPS if RCOND is invalid.
00091 *
00092       EPS = SLAMCH( 'Epsilon' )
00093       IF( RCOND.LT.ZERO ) THEN
00094          RESID = 1.0 / EPS
00095          RETURN
00096       END IF
00097 *
00098 *     Compute the maximum of
00099 *        norm(X - XACT) / ( norm(XACT) * EPS )
00100 *     over all the vectors X and XACT .
00101 *
00102       RESID = ZERO
00103       DO 20 J = 1, NRHS
00104          IX = ICAMAX( N, XACT( 1, J ), 1 )
00105          XNORM = CABS1( XACT( IX, J ) )
00106          DIFFNM = ZERO
00107          DO 10 I = 1, N
00108             DIFFNM = MAX( DIFFNM, CABS1( X( I, J )-XACT( I, J ) ) )
00109    10    CONTINUE
00110          IF( XNORM.LE.ZERO ) THEN
00111             IF( DIFFNM.GT.ZERO )
00112      $         RESID = 1.0 / EPS
00113          ELSE
00114             RESID = MAX( RESID, ( DIFFNM / XNORM )*RCOND )
00115          END IF
00116    20 CONTINUE
00117       IF( RESID*EPS.LT.1.0 )
00118      $   RESID = RESID / EPS
00119 *
00120       RETURN
00121 *
00122 *     End of CGET04
00123 *
00124       END
 All Files Functions