LAPACK 3.3.0

zstedc.f

Go to the documentation of this file.
00001       SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
00002      $                   LRWORK, IWORK, LIWORK, INFO )
00003 *
00004 *  -- LAPACK routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          COMPZ
00011       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       INTEGER            IWORK( * )
00015       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
00016       COMPLEX*16         WORK( * ), Z( LDZ, * )
00017 *     ..
00018 *
00019 *  Purpose
00020 *  =======
00021 *
00022 *  ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
00023 *  symmetric tridiagonal matrix using the divide and conquer method.
00024 *  The eigenvectors of a full or band complex Hermitian matrix can also
00025 *  be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
00026 *  matrix to tridiagonal form.
00027 *
00028 *  This code makes very mild assumptions about floating point
00029 *  arithmetic. It will work on machines with a guard digit in
00030 *  add/subtract, or on those binary machines without guard digits
00031 *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
00032 *  It could conceivably fail on hexadecimal or decimal machines
00033 *  without guard digits, but we know of none.  See DLAED3 for details.
00034 *
00035 *  Arguments
00036 *  =========
00037 *
00038 *  COMPZ   (input) CHARACTER*1
00039 *          = 'N':  Compute eigenvalues only.
00040 *          = 'I':  Compute eigenvectors of tridiagonal matrix also.
00041 *          = 'V':  Compute eigenvectors of original Hermitian matrix
00042 *                  also.  On entry, Z contains the unitary matrix used
00043 *                  to reduce the original matrix to tridiagonal form.
00044 *
00045 *  N       (input) INTEGER
00046 *          The dimension of the symmetric tridiagonal matrix.  N >= 0.
00047 *
00048 *  D       (input/output) DOUBLE PRECISION array, dimension (N)
00049 *          On entry, the diagonal elements of the tridiagonal matrix.
00050 *          On exit, if INFO = 0, the eigenvalues in ascending order.
00051 *
00052 *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
00053 *          On entry, the subdiagonal elements of the tridiagonal matrix.
00054 *          On exit, E has been destroyed.
00055 *
00056 *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
00057 *          On entry, if COMPZ = 'V', then Z contains the unitary
00058 *          matrix used in the reduction to tridiagonal form.
00059 *          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
00060 *          orthonormal eigenvectors of the original Hermitian matrix,
00061 *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
00062 *          of the symmetric tridiagonal matrix.
00063 *          If  COMPZ = 'N', then Z is not referenced.
00064 *
00065 *  LDZ     (input) INTEGER
00066 *          The leading dimension of the array Z.  LDZ >= 1.
00067 *          If eigenvectors are desired, then LDZ >= max(1,N).
00068 *
00069 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
00070 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00071 *
00072 *  LWORK   (input) INTEGER
00073 *          The dimension of the array WORK.
00074 *          If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
00075 *          If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
00076 *          Note that for COMPZ = 'V', then if N is less than or
00077 *          equal to the minimum divide size, usually 25, then LWORK need
00078 *          only be 1.
00079 *
00080 *          If LWORK = -1, then a workspace query is assumed; the routine
00081 *          only calculates the optimal sizes of the WORK, RWORK and
00082 *          IWORK arrays, returns these values as the first entries of
00083 *          the WORK, RWORK and IWORK arrays, and no error message
00084 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
00085 *
00086 *  RWORK   (workspace/output) DOUBLE PRECISION array,
00087 *                                         dimension (LRWORK)
00088 *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
00089 *
00090 *  LRWORK  (input) INTEGER
00091 *          The dimension of the array RWORK.
00092 *          If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
00093 *          If COMPZ = 'V' and N > 1, LRWORK must be at least
00094 *                         1 + 3*N + 2*N*lg N + 3*N**2 ,
00095 *                         where lg( N ) = smallest integer k such
00096 *                         that 2**k >= N.
00097 *          If COMPZ = 'I' and N > 1, LRWORK must be at least
00098 *                         1 + 4*N + 2*N**2 .
00099 *          Note that for COMPZ = 'I' or 'V', then if N is less than or
00100 *          equal to the minimum divide size, usually 25, then LRWORK
00101 *          need only be max(1,2*(N-1)).
00102 *
00103 *          If LRWORK = -1, then a workspace query is assumed; the
00104 *          routine only calculates the optimal sizes of the WORK, RWORK
00105 *          and IWORK arrays, returns these values as the first entries
00106 *          of the WORK, RWORK and IWORK arrays, and no error message
00107 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
00108 *
00109 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
00110 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
00111 *
00112 *  LIWORK  (input) INTEGER
00113 *          The dimension of the array IWORK.
00114 *          If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
00115 *          If COMPZ = 'V' or N > 1,  LIWORK must be at least
00116 *                                    6 + 6*N + 5*N*lg N.
00117 *          If COMPZ = 'I' or N > 1,  LIWORK must be at least
00118 *                                    3 + 5*N .
00119 *          Note that for COMPZ = 'I' or 'V', then if N is less than or
00120 *          equal to the minimum divide size, usually 25, then LIWORK
00121 *          need only be 1.
00122 *
00123 *          If LIWORK = -1, then a workspace query is assumed; the
00124 *          routine only calculates the optimal sizes of the WORK, RWORK
00125 *          and IWORK arrays, returns these values as the first entries
00126 *          of the WORK, RWORK and IWORK arrays, and no error message
00127 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
00128 *
00129 *  INFO    (output) INTEGER
00130 *          = 0:  successful exit.
00131 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
00132 *          > 0:  The algorithm failed to compute an eigenvalue while
00133 *                working on the submatrix lying in rows and columns
00134 *                INFO/(N+1) through mod(INFO,N+1).
00135 *
00136 *  Further Details
00137 *  ===============
00138 *
00139 *  Based on contributions by
00140 *     Jeff Rutter, Computer Science Division, University of California
00141 *     at Berkeley, USA
00142 *
00143 *  =====================================================================
00144 *
00145 *     .. Parameters ..
00146       DOUBLE PRECISION   ZERO, ONE, TWO
00147       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
00148 *     ..
00149 *     .. Local Scalars ..
00150       LOGICAL            LQUERY
00151       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
00152      $                   LRWMIN, LWMIN, M, SMLSIZ, START
00153       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
00154 *     ..
00155 *     .. External Functions ..
00156       LOGICAL            LSAME
00157       INTEGER            ILAENV
00158       DOUBLE PRECISION   DLAMCH, DLANST
00159       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
00160 *     ..
00161 *     .. External Subroutines ..
00162       EXTERNAL           DLASCL, DLASET, DSTEDC, DSTEQR, DSTERF, XERBLA,
00163      $                   ZLACPY, ZLACRM, ZLAED0, ZSTEQR, ZSWAP
00164 *     ..
00165 *     .. Intrinsic Functions ..
00166       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
00167 *     ..
00168 *     .. Executable Statements ..
00169 *
00170 *     Test the input parameters.
00171 *
00172       INFO = 0
00173       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
00174 *
00175       IF( LSAME( COMPZ, 'N' ) ) THEN
00176          ICOMPZ = 0
00177       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
00178          ICOMPZ = 1
00179       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
00180          ICOMPZ = 2
00181       ELSE
00182          ICOMPZ = -1
00183       END IF
00184       IF( ICOMPZ.LT.0 ) THEN
00185          INFO = -1
00186       ELSE IF( N.LT.0 ) THEN
00187          INFO = -2
00188       ELSE IF( ( LDZ.LT.1 ) .OR.
00189      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
00190          INFO = -6
00191       END IF
00192 *
00193       IF( INFO.EQ.0 ) THEN
00194 *
00195 *        Compute the workspace requirements
00196 *
00197          SMLSIZ = ILAENV( 9, 'ZSTEDC', ' ', 0, 0, 0, 0 )
00198          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
00199             LWMIN = 1
00200             LIWMIN = 1
00201             LRWMIN = 1
00202          ELSE IF( N.LE.SMLSIZ ) THEN
00203             LWMIN = 1
00204             LIWMIN = 1
00205             LRWMIN = 2*( N - 1 )
00206          ELSE IF( ICOMPZ.EQ.1 ) THEN
00207             LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
00208             IF( 2**LGN.LT.N )
00209      $         LGN = LGN + 1
00210             IF( 2**LGN.LT.N )
00211      $         LGN = LGN + 1
00212             LWMIN = N*N
00213             LRWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
00214             LIWMIN = 6 + 6*N + 5*N*LGN
00215          ELSE IF( ICOMPZ.EQ.2 ) THEN
00216             LWMIN = 1
00217             LRWMIN = 1 + 4*N + 2*N**2
00218             LIWMIN = 3 + 5*N
00219          END IF
00220          WORK( 1 ) = LWMIN
00221          RWORK( 1 ) = LRWMIN
00222          IWORK( 1 ) = LIWMIN
00223 *
00224          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
00225             INFO = -8
00226          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
00227             INFO = -10
00228          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
00229             INFO = -12
00230          END IF
00231       END IF
00232 *
00233       IF( INFO.NE.0 ) THEN
00234          CALL XERBLA( 'ZSTEDC', -INFO )
00235          RETURN
00236       ELSE IF( LQUERY ) THEN
00237          RETURN
00238       END IF
00239 *
00240 *     Quick return if possible
00241 *
00242       IF( N.EQ.0 )
00243      $   RETURN
00244       IF( N.EQ.1 ) THEN
00245          IF( ICOMPZ.NE.0 )
00246      $      Z( 1, 1 ) = ONE
00247          RETURN
00248       END IF
00249 *
00250 *     If the following conditional clause is removed, then the routine
00251 *     will use the Divide and Conquer routine to compute only the
00252 *     eigenvalues, which requires (3N + 3N**2) real workspace and
00253 *     (2 + 5N + 2N lg(N)) integer workspace.
00254 *     Since on many architectures DSTERF is much faster than any other
00255 *     algorithm for finding eigenvalues only, it is used here
00256 *     as the default. If the conditional clause is removed, then
00257 *     information on the size of workspace needs to be changed.
00258 *
00259 *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
00260 *
00261       IF( ICOMPZ.EQ.0 ) THEN
00262          CALL DSTERF( N, D, E, INFO )
00263          GO TO 70
00264       END IF
00265 *
00266 *     If N is smaller than the minimum divide size (SMLSIZ+1), then
00267 *     solve the problem with another solver.
00268 *
00269       IF( N.LE.SMLSIZ ) THEN
00270 *
00271          CALL ZSTEQR( COMPZ, N, D, E, Z, LDZ, RWORK, INFO )
00272 *
00273       ELSE
00274 *
00275 *        If COMPZ = 'I', we simply call DSTEDC instead.
00276 *
00277          IF( ICOMPZ.EQ.2 ) THEN
00278             CALL DLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
00279             LL = N*N + 1
00280             CALL DSTEDC( 'I', N, D, E, RWORK, N,
00281      $                   RWORK( LL ), LRWORK-LL+1, IWORK, LIWORK, INFO )
00282             DO 20 J = 1, N
00283                DO 10 I = 1, N
00284                   Z( I, J ) = RWORK( ( J-1 )*N+I )
00285    10          CONTINUE
00286    20       CONTINUE
00287             GO TO 70
00288          END IF
00289 *
00290 *        From now on, only option left to be handled is COMPZ = 'V',
00291 *        i.e. ICOMPZ = 1.
00292 *
00293 *        Scale.
00294 *
00295          ORGNRM = DLANST( 'M', N, D, E )
00296          IF( ORGNRM.EQ.ZERO )
00297      $      GO TO 70
00298 *
00299          EPS = DLAMCH( 'Epsilon' )
00300 *
00301          START = 1
00302 *
00303 *        while ( START <= N )
00304 *
00305    30    CONTINUE
00306          IF( START.LE.N ) THEN
00307 *
00308 *           Let FINISH be the position of the next subdiagonal entry
00309 *           such that E( FINISH ) <= TINY or FINISH = N if no such
00310 *           subdiagonal exists.  The matrix identified by the elements
00311 *           between START and FINISH constitutes an independent
00312 *           sub-problem.
00313 *
00314             FINISH = START
00315    40       CONTINUE
00316             IF( FINISH.LT.N ) THEN
00317                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
00318      $                    SQRT( ABS( D( FINISH+1 ) ) )
00319                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
00320                   FINISH = FINISH + 1
00321                   GO TO 40
00322                END IF
00323             END IF
00324 *
00325 *           (Sub) Problem determined.  Compute its size and solve it.
00326 *
00327             M = FINISH - START + 1
00328             IF( M.GT.SMLSIZ ) THEN
00329 *
00330 *              Scale.
00331 *
00332                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
00333                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
00334      $                      INFO )
00335                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
00336      $                      M-1, INFO )
00337 *
00338                CALL ZLAED0( N, M, D( START ), E( START ), Z( 1, START ),
00339      $                      LDZ, WORK, N, RWORK, IWORK, INFO )
00340                IF( INFO.GT.0 ) THEN
00341                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
00342      $                   MOD( INFO, ( M+1 ) ) + START - 1
00343                   GO TO 70
00344                END IF
00345 *
00346 *              Scale back.
00347 *
00348                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
00349      $                      INFO )
00350 *
00351             ELSE
00352                CALL DSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
00353      $                      RWORK( M*M+1 ), INFO )
00354                CALL ZLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
00355      $                      RWORK( M*M+1 ) )
00356                CALL ZLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
00357                IF( INFO.GT.0 ) THEN
00358                   INFO = START*( N+1 ) + FINISH
00359                   GO TO 70
00360                END IF
00361             END IF
00362 *
00363             START = FINISH + 1
00364             GO TO 30
00365          END IF
00366 *
00367 *        endwhile
00368 *
00369 *        If the problem split any number of times, then the eigenvalues
00370 *        will not be properly ordered.  Here we permute the eigenvalues
00371 *        (and the associated eigenvectors) into ascending order.
00372 *
00373          IF( M.NE.N ) THEN
00374 *
00375 *           Use Selection Sort to minimize swaps of eigenvectors
00376 *
00377             DO 60 II = 2, N
00378                I = II - 1
00379                K = I
00380                P = D( I )
00381                DO 50 J = II, N
00382                   IF( D( J ).LT.P ) THEN
00383                      K = J
00384                      P = D( J )
00385                   END IF
00386    50          CONTINUE
00387                IF( K.NE.I ) THEN
00388                   D( K ) = D( I )
00389                   D( I ) = P
00390                   CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
00391                END IF
00392    60       CONTINUE
00393          END IF
00394       END IF
00395 *
00396    70 CONTINUE
00397       WORK( 1 ) = LWMIN
00398       RWORK( 1 ) = LRWMIN
00399       IWORK( 1 ) = LIWMIN
00400 *
00401       RETURN
00402 *
00403 *     End of ZSTEDC
00404 *
00405       END
 All Files Functions