LAPACK 3.3.0
|
00001 SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO ) 00002 * 00003 * -- LAPACK routine (version 3.2.2) -- 00004 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- 00005 * -- Jason Riedy of Univ. of California Berkeley. -- 00006 * -- June 2010 -- 00007 * 00008 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00009 * -- Univ. of California Berkeley and NAG Ltd. -- 00010 * 00011 IMPLICIT NONE 00012 * .. 00013 * .. Scalar Arguments .. 00014 INTEGER INFO, LDA, N 00015 REAL AMAX, SCOND 00016 CHARACTER UPLO 00017 * .. 00018 * .. Array Arguments .. 00019 COMPLEX A( LDA, * ), WORK( * ) 00020 REAL S( * ) 00021 * .. 00022 * 00023 * Purpose 00024 * ======= 00025 * 00026 * CSYEQUB computes row and column scalings intended to equilibrate a 00027 * symmetric matrix A and reduce its condition number 00028 * (with respect to the two-norm). S contains the scale factors, 00029 * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with 00030 * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This 00031 * choice of S puts the condition number of B within a factor N of the 00032 * smallest possible condition number over all possible diagonal 00033 * scalings. 00034 * 00035 * Arguments 00036 * ========= 00037 * 00038 * UPLO (input) CHARACTER*1 00039 * Specifies whether the details of the factorization are stored 00040 * as an upper or lower triangular matrix. 00041 * = 'U': Upper triangular, form is A = U*D*U**T; 00042 * = 'L': Lower triangular, form is A = L*D*L**T. 00043 * 00044 * N (input) INTEGER 00045 * The order of the matrix A. N >= 0. 00046 * 00047 * A (input) COMPLEX array, dimension (LDA,N) 00048 * The N-by-N symmetric matrix whose scaling 00049 * factors are to be computed. Only the diagonal elements of A 00050 * are referenced. 00051 * 00052 * LDA (input) INTEGER 00053 * The leading dimension of the array A. LDA >= max(1,N). 00054 * 00055 * S (output) REAL array, dimension (N) 00056 * If INFO = 0, S contains the scale factors for A. 00057 * 00058 * SCOND (output) REAL 00059 * If INFO = 0, S contains the ratio of the smallest S(i) to 00060 * the largest S(i). If SCOND >= 0.1 and AMAX is neither too 00061 * large nor too small, it is not worth scaling by S. 00062 * 00063 * AMAX (output) REAL 00064 * Absolute value of largest matrix element. If AMAX is very 00065 * close to overflow or very close to underflow, the matrix 00066 * should be scaled. 00067 * 00068 * WORK (workspace) COMPLEX array, dimension (3*N) 00069 * 00070 * INFO (output) INTEGER 00071 * = 0: successful exit 00072 * < 0: if INFO = -i, the i-th argument had an illegal value 00073 * > 0: if INFO = i, the i-th diagonal element is nonpositive. 00074 * 00075 * Further Details 00076 * ======= ======= 00077 * 00078 * Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", 00079 * Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. 00080 * DOI 10.1023/B:NUMA.0000016606.32820.69 00081 * Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf 00082 * 00083 * ===================================================================== 00084 * 00085 * .. Parameters .. 00086 REAL ONE, ZERO 00087 PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 ) 00088 INTEGER MAX_ITER 00089 PARAMETER ( MAX_ITER = 100 ) 00090 * .. 00091 * .. Local Scalars .. 00092 INTEGER I, J, ITER 00093 REAL AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE, 00094 $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ 00095 LOGICAL UP 00096 COMPLEX ZDUM 00097 * .. 00098 * .. External Functions .. 00099 REAL SLAMCH 00100 LOGICAL LSAME 00101 EXTERNAL LSAME, SLAMCH 00102 * .. 00103 * .. External Subroutines .. 00104 EXTERNAL CLASSQ 00105 * .. 00106 * .. Intrinsic Functions .. 00107 INTRINSIC ABS, AIMAG, INT, LOG, MAX, MIN, REAL, SQRT 00108 * .. 00109 * .. Statement Functions .. 00110 REAL CABS1 00111 * .. 00112 * Statement Function Definitions 00113 CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) 00114 * .. 00115 * .. Executable Statements .. 00116 * 00117 * Test the input parameters. 00118 * 00119 INFO = 0 00120 IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN 00121 INFO = -1 00122 ELSE IF ( N .LT. 0 ) THEN 00123 INFO = -2 00124 ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN 00125 INFO = -4 00126 END IF 00127 IF ( INFO .NE. 0 ) THEN 00128 CALL XERBLA( 'CSYEQUB', -INFO ) 00129 RETURN 00130 END IF 00131 00132 UP = LSAME( UPLO, 'U' ) 00133 AMAX = ZERO 00134 * 00135 * Quick return if possible. 00136 * 00137 IF ( N .EQ. 0 ) THEN 00138 SCOND = ONE 00139 RETURN 00140 END IF 00141 00142 DO I = 1, N 00143 S( I ) = ZERO 00144 END DO 00145 00146 AMAX = ZERO 00147 IF ( UP ) THEN 00148 DO J = 1, N 00149 DO I = 1, J-1 00150 S( I ) = MAX( S( I ), CABS1( A( I, J ) ) ) 00151 S( J ) = MAX( S( J ), CABS1( A( I, J ) ) ) 00152 AMAX = MAX( AMAX, CABS1( A( I, J ) ) ) 00153 END DO 00154 S( J ) = MAX( S( J ), CABS1( A( J, J) ) ) 00155 AMAX = MAX( AMAX, CABS1( A( J, J ) ) ) 00156 END DO 00157 ELSE 00158 DO J = 1, N 00159 S( J ) = MAX( S( J ), CABS1( A( J, J ) ) ) 00160 AMAX = MAX( AMAX, CABS1( A( J, J ) ) ) 00161 DO I = J+1, N 00162 S( I ) = MAX( S( I ), CABS1( A( I, J ) ) ) 00163 S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) ) 00164 AMAX = MAX( AMAX, CABS1( A( I, J ) ) ) 00165 END DO 00166 END DO 00167 END IF 00168 DO J = 1, N 00169 S( J ) = 1.0 / S( J ) 00170 END DO 00171 00172 TOL = ONE / SQRT( 2.0E0 * N ) 00173 00174 DO ITER = 1, MAX_ITER 00175 SCALE = 0.0 00176 SUMSQ = 0.0 00177 * beta = |A|s 00178 DO I = 1, N 00179 WORK( I ) = ZERO 00180 END DO 00181 IF ( UP ) THEN 00182 DO J = 1, N 00183 DO I = 1, J-1 00184 T = CABS1( A( I, J ) ) 00185 WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J ) 00186 WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I ) 00187 END DO 00188 WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J ) 00189 END DO 00190 ELSE 00191 DO J = 1, N 00192 WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J ) 00193 DO I = J+1, N 00194 T = CABS1( A( I, J ) ) 00195 WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J ) 00196 WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I ) 00197 END DO 00198 END DO 00199 END IF 00200 00201 * avg = s^T beta / n 00202 AVG = 0.0 00203 DO I = 1, N 00204 AVG = AVG + S( I )*WORK( I ) 00205 END DO 00206 AVG = AVG / N 00207 00208 STD = 0.0 00209 DO I = N+1, 2*N 00210 WORK( I ) = S( I-N ) * WORK( I-N ) - AVG 00211 END DO 00212 CALL CLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ ) 00213 STD = SCALE * SQRT( SUMSQ / N ) 00214 00215 IF ( STD .LT. TOL * AVG ) GOTO 999 00216 00217 DO I = 1, N 00218 T = CABS1( A( I, I ) ) 00219 SI = S( I ) 00220 C2 = ( N-1 ) * T 00221 C1 = ( N-2 ) * ( WORK( I ) - T*SI ) 00222 C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG 00223 D = C1*C1 - 4*C0*C2 00224 00225 IF ( D .LE. 0 ) THEN 00226 INFO = -1 00227 RETURN 00228 END IF 00229 SI = -2*C0 / ( C1 + SQRT( D ) ) 00230 00231 D = SI - S( I ) 00232 U = ZERO 00233 IF ( UP ) THEN 00234 DO J = 1, I 00235 T = CABS1( A( J, I ) ) 00236 U = U + S( J )*T 00237 WORK( J ) = WORK( J ) + D*T 00238 END DO 00239 DO J = I+1,N 00240 T = CABS1( A( I, J ) ) 00241 U = U + S( J )*T 00242 WORK( J ) = WORK( J ) + D*T 00243 END DO 00244 ELSE 00245 DO J = 1, I 00246 T = CABS1( A( I, J ) ) 00247 U = U + S( J )*T 00248 WORK( J ) = WORK( J ) + D*T 00249 END DO 00250 DO J = I+1,N 00251 T = CABS1( A( J, I ) ) 00252 U = U + S( J )*T 00253 WORK( J ) = WORK( J ) + D*T 00254 END DO 00255 END IF 00256 AVG = AVG + ( U + WORK( I ) ) * D / N 00257 S( I ) = SI 00258 END DO 00259 END DO 00260 00261 999 CONTINUE 00262 00263 SMLNUM = SLAMCH( 'SAFEMIN' ) 00264 BIGNUM = ONE / SMLNUM 00265 SMIN = BIGNUM 00266 SMAX = ZERO 00267 T = ONE / SQRT( AVG ) 00268 BASE = SLAMCH( 'B' ) 00269 U = ONE / LOG( BASE ) 00270 DO I = 1, N 00271 S( I ) = BASE ** INT( U * LOG( S( I ) * T ) ) 00272 SMIN = MIN( SMIN, S( I ) ) 00273 SMAX = MAX( SMAX, S( I ) ) 00274 END DO 00275 SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM ) 00276 * 00277 END