LAPACK 3.3.0
|
00001 SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, 00002 $ WORK, LWORK, INFO ) 00003 * 00004 * -- LAPACK routine (version 3.2) -- 00005 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00006 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00007 * November 2006 00008 * 00009 * .. Scalar Arguments .. 00010 CHARACTER SIDE, TRANS 00011 INTEGER INFO, K, LDA, LDC, LWORK, M, N 00012 * .. 00013 * .. Array Arguments .. 00014 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), 00015 $ WORK( * ) 00016 * .. 00017 * 00018 * Purpose 00019 * ======= 00020 * 00021 * CUNMQL overwrites the general complex M-by-N matrix C with 00022 * 00023 * SIDE = 'L' SIDE = 'R' 00024 * TRANS = 'N': Q * C C * Q 00025 * TRANS = 'C': Q**H * C C * Q**H 00026 * 00027 * where Q is a complex unitary matrix defined as the product of k 00028 * elementary reflectors 00029 * 00030 * Q = H(k) . . . H(2) H(1) 00031 * 00032 * as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N 00033 * if SIDE = 'R'. 00034 * 00035 * Arguments 00036 * ========= 00037 * 00038 * SIDE (input) CHARACTER*1 00039 * = 'L': apply Q or Q**H from the Left; 00040 * = 'R': apply Q or Q**H from the Right. 00041 * 00042 * TRANS (input) CHARACTER*1 00043 * = 'N': No transpose, apply Q; 00044 * = 'C': Transpose, apply Q**H. 00045 * 00046 * M (input) INTEGER 00047 * The number of rows of the matrix C. M >= 0. 00048 * 00049 * N (input) INTEGER 00050 * The number of columns of the matrix C. N >= 0. 00051 * 00052 * K (input) INTEGER 00053 * The number of elementary reflectors whose product defines 00054 * the matrix Q. 00055 * If SIDE = 'L', M >= K >= 0; 00056 * if SIDE = 'R', N >= K >= 0. 00057 * 00058 * A (input) COMPLEX array, dimension (LDA,K) 00059 * The i-th column must contain the vector which defines the 00060 * elementary reflector H(i), for i = 1,2,...,k, as returned by 00061 * CGEQLF in the last k columns of its array argument A. 00062 * A is modified by the routine but restored on exit. 00063 * 00064 * LDA (input) INTEGER 00065 * The leading dimension of the array A. 00066 * If SIDE = 'L', LDA >= max(1,M); 00067 * if SIDE = 'R', LDA >= max(1,N). 00068 * 00069 * TAU (input) COMPLEX array, dimension (K) 00070 * TAU(i) must contain the scalar factor of the elementary 00071 * reflector H(i), as returned by CGEQLF. 00072 * 00073 * C (input/output) COMPLEX array, dimension (LDC,N) 00074 * On entry, the M-by-N matrix C. 00075 * On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. 00076 * 00077 * LDC (input) INTEGER 00078 * The leading dimension of the array C. LDC >= max(1,M). 00079 * 00080 * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) 00081 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 00082 * 00083 * LWORK (input) INTEGER 00084 * The dimension of the array WORK. 00085 * If SIDE = 'L', LWORK >= max(1,N); 00086 * if SIDE = 'R', LWORK >= max(1,M). 00087 * For optimum performance LWORK >= N*NB if SIDE = 'L', and 00088 * LWORK >= M*NB if SIDE = 'R', where NB is the optimal 00089 * blocksize. 00090 * 00091 * If LWORK = -1, then a workspace query is assumed; the routine 00092 * only calculates the optimal size of the WORK array, returns 00093 * this value as the first entry of the WORK array, and no error 00094 * message related to LWORK is issued by XERBLA. 00095 * 00096 * INFO (output) INTEGER 00097 * = 0: successful exit 00098 * < 0: if INFO = -i, the i-th argument had an illegal value 00099 * 00100 * ===================================================================== 00101 * 00102 * .. Parameters .. 00103 INTEGER NBMAX, LDT 00104 PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) 00105 * .. 00106 * .. Local Scalars .. 00107 LOGICAL LEFT, LQUERY, NOTRAN 00108 INTEGER I, I1, I2, I3, IB, IINFO, IWS, LDWORK, LWKOPT, 00109 $ MI, NB, NBMIN, NI, NQ, NW 00110 * .. 00111 * .. Local Arrays .. 00112 COMPLEX T( LDT, NBMAX ) 00113 * .. 00114 * .. External Functions .. 00115 LOGICAL LSAME 00116 INTEGER ILAENV 00117 EXTERNAL LSAME, ILAENV 00118 * .. 00119 * .. External Subroutines .. 00120 EXTERNAL CLARFB, CLARFT, CUNM2L, XERBLA 00121 * .. 00122 * .. Intrinsic Functions .. 00123 INTRINSIC MAX, MIN 00124 * .. 00125 * .. Executable Statements .. 00126 * 00127 * Test the input arguments 00128 * 00129 INFO = 0 00130 LEFT = LSAME( SIDE, 'L' ) 00131 NOTRAN = LSAME( TRANS, 'N' ) 00132 LQUERY = ( LWORK.EQ.-1 ) 00133 * 00134 * NQ is the order of Q and NW is the minimum dimension of WORK 00135 * 00136 IF( LEFT ) THEN 00137 NQ = M 00138 NW = MAX( 1, N ) 00139 ELSE 00140 NQ = N 00141 NW = MAX( 1, M ) 00142 END IF 00143 IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN 00144 INFO = -1 00145 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN 00146 INFO = -2 00147 ELSE IF( M.LT.0 ) THEN 00148 INFO = -3 00149 ELSE IF( N.LT.0 ) THEN 00150 INFO = -4 00151 ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN 00152 INFO = -5 00153 ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN 00154 INFO = -7 00155 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN 00156 INFO = -10 00157 END IF 00158 * 00159 IF( INFO.EQ.0 ) THEN 00160 IF( M.EQ.0 .OR. N.EQ.0 ) THEN 00161 LWKOPT = 1 00162 ELSE 00163 * 00164 * Determine the block size. NB may be at most NBMAX, where 00165 * NBMAX is used to define the local array T. 00166 * 00167 NB = MIN( NBMAX, ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N, 00168 $ K, -1 ) ) 00169 LWKOPT = NW*NB 00170 END IF 00171 WORK( 1 ) = LWKOPT 00172 * 00173 IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN 00174 INFO = -12 00175 END IF 00176 END IF 00177 * 00178 IF( INFO.NE.0 ) THEN 00179 CALL XERBLA( 'CUNMQL', -INFO ) 00180 RETURN 00181 ELSE IF( LQUERY ) THEN 00182 RETURN 00183 END IF 00184 * 00185 * Quick return if possible 00186 * 00187 IF( M.EQ.0 .OR. N.EQ.0 ) THEN 00188 RETURN 00189 END IF 00190 * 00191 NBMIN = 2 00192 LDWORK = NW 00193 IF( NB.GT.1 .AND. NB.LT.K ) THEN 00194 IWS = NW*NB 00195 IF( LWORK.LT.IWS ) THEN 00196 NB = LWORK / LDWORK 00197 NBMIN = MAX( 2, ILAENV( 2, 'CUNMQL', SIDE // TRANS, M, N, K, 00198 $ -1 ) ) 00199 END IF 00200 ELSE 00201 IWS = NW 00202 END IF 00203 * 00204 IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN 00205 * 00206 * Use unblocked code 00207 * 00208 CALL CUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, 00209 $ IINFO ) 00210 ELSE 00211 * 00212 * Use blocked code 00213 * 00214 IF( ( LEFT .AND. NOTRAN ) .OR. 00215 $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN 00216 I1 = 1 00217 I2 = K 00218 I3 = NB 00219 ELSE 00220 I1 = ( ( K-1 ) / NB )*NB + 1 00221 I2 = 1 00222 I3 = -NB 00223 END IF 00224 * 00225 IF( LEFT ) THEN 00226 NI = N 00227 ELSE 00228 MI = M 00229 END IF 00230 * 00231 DO 10 I = I1, I2, I3 00232 IB = MIN( NB, K-I+1 ) 00233 * 00234 * Form the triangular factor of the block reflector 00235 * H = H(i+ib-1) . . . H(i+1) H(i) 00236 * 00237 CALL CLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB, 00238 $ A( 1, I ), LDA, TAU( I ), T, LDT ) 00239 IF( LEFT ) THEN 00240 * 00241 * H or H' is applied to C(1:m-k+i+ib-1,1:n) 00242 * 00243 MI = M - K + I + IB - 1 00244 ELSE 00245 * 00246 * H or H' is applied to C(1:m,1:n-k+i+ib-1) 00247 * 00248 NI = N - K + I + IB - 1 00249 END IF 00250 * 00251 * Apply H or H' 00252 * 00253 CALL CLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI, 00254 $ IB, A( 1, I ), LDA, T, LDT, C, LDC, WORK, 00255 $ LDWORK ) 00256 10 CONTINUE 00257 END IF 00258 WORK( 1 ) = LWKOPT 00259 RETURN 00260 * 00261 * End of CUNMQL 00262 * 00263 END