LAPACK 3.3.0
|
00001 SUBROUTINE ZPBT02( UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB, 00002 $ RWORK, RESID ) 00003 * 00004 * -- LAPACK test routine (version 3.1) -- 00005 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. 00006 * November 2006 00007 * 00008 * .. Scalar Arguments .. 00009 CHARACTER UPLO 00010 INTEGER KD, LDA, LDB, LDX, N, NRHS 00011 DOUBLE PRECISION RESID 00012 * .. 00013 * .. Array Arguments .. 00014 DOUBLE PRECISION RWORK( * ) 00015 COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ) 00016 * .. 00017 * 00018 * Purpose 00019 * ======= 00020 * 00021 * ZPBT02 computes the residual for a solution of a Hermitian banded 00022 * system of equations A*x = b: 00023 * RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS) 00024 * where EPS is the machine precision. 00025 * 00026 * Arguments 00027 * ========= 00028 * 00029 * UPLO (input) CHARACTER*1 00030 * Specifies whether the upper or lower triangular part of the 00031 * Hermitian matrix A is stored: 00032 * = 'U': Upper triangular 00033 * = 'L': Lower triangular 00034 * 00035 * N (input) INTEGER 00036 * The number of rows and columns of the matrix A. N >= 0. 00037 * 00038 * KD (input) INTEGER 00039 * The number of super-diagonals of the matrix A if UPLO = 'U', 00040 * or the number of sub-diagonals if UPLO = 'L'. KD >= 0. 00041 * 00042 * A (input) COMPLEX*16 array, dimension (LDA,N) 00043 * The original Hermitian band matrix A. If UPLO = 'U', the 00044 * upper triangular part of A is stored as a band matrix; if 00045 * UPLO = 'L', the lower triangular part of A is stored. The 00046 * columns of the appropriate triangle are stored in the columns 00047 * of A and the diagonals of the triangle are stored in the rows 00048 * of A. See ZPBTRF for further details. 00049 * 00050 * LDA (input) INTEGER. 00051 * The leading dimension of the array A. LDA >= max(1,KD+1). 00052 * 00053 * X (input) COMPLEX*16 array, dimension (LDX,NRHS) 00054 * The computed solution vectors for the system of linear 00055 * equations. 00056 * 00057 * LDX (input) INTEGER 00058 * The leading dimension of the array X. LDX >= max(1,N). 00059 * 00060 * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) 00061 * On entry, the right hand side vectors for the system of 00062 * linear equations. 00063 * On exit, B is overwritten with the difference B - A*X. 00064 * 00065 * LDB (input) INTEGER 00066 * The leading dimension of the array B. LDB >= max(1,N). 00067 * 00068 * RWORK (workspace) DOUBLE PRECISION array, dimension (N) 00069 * 00070 * RESID (output) DOUBLE PRECISION 00071 * The maximum over the number of right hand sides of 00072 * norm(B - A*X) / ( norm(A) * norm(X) * EPS ). 00073 * 00074 * ===================================================================== 00075 * 00076 * .. Parameters .. 00077 DOUBLE PRECISION ZERO, ONE 00078 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00079 COMPLEX*16 CONE 00080 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) 00081 * .. 00082 * .. Local Scalars .. 00083 INTEGER J 00084 DOUBLE PRECISION ANORM, BNORM, EPS, XNORM 00085 * .. 00086 * .. External Functions .. 00087 DOUBLE PRECISION DLAMCH, DZASUM, ZLANHB 00088 EXTERNAL DLAMCH, DZASUM, ZLANHB 00089 * .. 00090 * .. External Subroutines .. 00091 EXTERNAL ZHBMV 00092 * .. 00093 * .. Intrinsic Functions .. 00094 INTRINSIC MAX 00095 * .. 00096 * .. Executable Statements .. 00097 * 00098 * Quick exit if N = 0 or NRHS = 0. 00099 * 00100 IF( N.LE.0 .OR. NRHS.LE.0 ) THEN 00101 RESID = ZERO 00102 RETURN 00103 END IF 00104 * 00105 * Exit with RESID = 1/EPS if ANORM = 0. 00106 * 00107 EPS = DLAMCH( 'Epsilon' ) 00108 ANORM = ZLANHB( '1', UPLO, N, KD, A, LDA, RWORK ) 00109 IF( ANORM.LE.ZERO ) THEN 00110 RESID = ONE / EPS 00111 RETURN 00112 END IF 00113 * 00114 * Compute B - A*X 00115 * 00116 DO 10 J = 1, NRHS 00117 CALL ZHBMV( UPLO, N, KD, -CONE, A, LDA, X( 1, J ), 1, CONE, 00118 $ B( 1, J ), 1 ) 00119 10 CONTINUE 00120 * 00121 * Compute the maximum over the number of right hand sides of 00122 * norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) 00123 * 00124 RESID = ZERO 00125 DO 20 J = 1, NRHS 00126 BNORM = DZASUM( N, B( 1, J ), 1 ) 00127 XNORM = DZASUM( N, X( 1, J ), 1 ) 00128 IF( XNORM.LE.ZERO ) THEN 00129 RESID = ONE / EPS 00130 ELSE 00131 RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) 00132 END IF 00133 20 CONTINUE 00134 * 00135 RETURN 00136 * 00137 * End of ZPBT02 00138 * 00139 END