LAPACK 3.3.0

chegv.f

Go to the documentation of this file.
00001       SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
00002      $                  LWORK, RWORK, INFO )
00003 *
00004 *  -- LAPACK driver routine (version 3.2) --
00005 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00006 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00007 *     November 2006
00008 *
00009 *     .. Scalar Arguments ..
00010       CHARACTER          JOBZ, UPLO
00011       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
00012 *     ..
00013 *     .. Array Arguments ..
00014       REAL               RWORK( * ), W( * )
00015       COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * )
00016 *     ..
00017 *
00018 *  Purpose
00019 *  =======
00020 *
00021 *  CHEGV computes all the eigenvalues, and optionally, the eigenvectors
00022 *  of a complex generalized Hermitian-definite eigenproblem, of the form
00023 *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
00024 *  Here A and B are assumed to be Hermitian and B is also
00025 *  positive definite.
00026 *
00027 *  Arguments
00028 *  =========
00029 *
00030 *  ITYPE   (input) INTEGER
00031 *          Specifies the problem type to be solved:
00032 *          = 1:  A*x = (lambda)*B*x
00033 *          = 2:  A*B*x = (lambda)*x
00034 *          = 3:  B*A*x = (lambda)*x
00035 *
00036 *  JOBZ    (input) CHARACTER*1
00037 *          = 'N':  Compute eigenvalues only;
00038 *          = 'V':  Compute eigenvalues and eigenvectors.
00039 *
00040 *  UPLO    (input) CHARACTER*1
00041 *          = 'U':  Upper triangles of A and B are stored;
00042 *          = 'L':  Lower triangles of A and B are stored.
00043 *
00044 *  N       (input) INTEGER
00045 *          The order of the matrices A and B.  N >= 0.
00046 *
00047 *  A       (input/output) COMPLEX array, dimension (LDA, N)
00048 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
00049 *          leading N-by-N upper triangular part of A contains the
00050 *          upper triangular part of the matrix A.  If UPLO = 'L',
00051 *          the leading N-by-N lower triangular part of A contains
00052 *          the lower triangular part of the matrix A.
00053 *
00054 *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
00055 *          matrix Z of eigenvectors.  The eigenvectors are normalized
00056 *          as follows:
00057 *          if ITYPE = 1 or 2, Z**H*B*Z = I;
00058 *          if ITYPE = 3, Z**H*inv(B)*Z = I.
00059 *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
00060 *          or the lower triangle (if UPLO='L') of A, including the
00061 *          diagonal, is destroyed.
00062 *
00063 *  LDA     (input) INTEGER
00064 *          The leading dimension of the array A.  LDA >= max(1,N).
00065 *
00066 *  B       (input/output) COMPLEX array, dimension (LDB, N)
00067 *          On entry, the Hermitian positive definite matrix B.
00068 *          If UPLO = 'U', the leading N-by-N upper triangular part of B
00069 *          contains the upper triangular part of the matrix B.
00070 *          If UPLO = 'L', the leading N-by-N lower triangular part of B
00071 *          contains the lower triangular part of the matrix B.
00072 *
00073 *          On exit, if INFO <= N, the part of B containing the matrix is
00074 *          overwritten by the triangular factor U or L from the Cholesky
00075 *          factorization B = U**H*U or B = L*L**H.
00076 *
00077 *  LDB     (input) INTEGER
00078 *          The leading dimension of the array B.  LDB >= max(1,N).
00079 *
00080 *  W       (output) REAL array, dimension (N)
00081 *          If INFO = 0, the eigenvalues in ascending order.
00082 *
00083 *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
00084 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00085 *
00086 *  LWORK   (input) INTEGER
00087 *          The length of the array WORK.  LWORK >= max(1,2*N-1).
00088 *          For optimal efficiency, LWORK >= (NB+1)*N,
00089 *          where NB is the blocksize for CHETRD returned by ILAENV.
00090 *
00091 *          If LWORK = -1, then a workspace query is assumed; the routine
00092 *          only calculates the optimal size of the WORK array, returns
00093 *          this value as the first entry of the WORK array, and no error
00094 *          message related to LWORK is issued by XERBLA.
00095 *
00096 *  RWORK   (workspace) REAL array, dimension (max(1, 3*N-2))
00097 *
00098 *  INFO    (output) INTEGER
00099 *          = 0:  successful exit
00100 *          < 0:  if INFO = -i, the i-th argument had an illegal value
00101 *          > 0:  CPOTRF or CHEEV returned an error code:
00102 *             <= N:  if INFO = i, CHEEV failed to converge;
00103 *                    i off-diagonal elements of an intermediate
00104 *                    tridiagonal form did not converge to zero;
00105 *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
00106 *                    minor of order i of B is not positive definite.
00107 *                    The factorization of B could not be completed and
00108 *                    no eigenvalues or eigenvectors were computed.
00109 *
00110 *  =====================================================================
00111 *
00112 *     .. Parameters ..
00113       COMPLEX            ONE
00114       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
00115 *     ..
00116 *     .. Local Scalars ..
00117       LOGICAL            LQUERY, UPPER, WANTZ
00118       CHARACTER          TRANS
00119       INTEGER            LWKOPT, NB, NEIG
00120 *     ..
00121 *     .. External Functions ..
00122       LOGICAL            LSAME
00123       INTEGER            ILAENV
00124       EXTERNAL           ILAENV, LSAME
00125 *     ..
00126 *     .. External Subroutines ..
00127       EXTERNAL           CHEEV, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
00128 *     ..
00129 *     .. Intrinsic Functions ..
00130       INTRINSIC          MAX
00131 *     ..
00132 *     .. Executable Statements ..
00133 *
00134 *     Test the input parameters.
00135 *
00136       WANTZ = LSAME( JOBZ, 'V' )
00137       UPPER = LSAME( UPLO, 'U' )
00138       LQUERY = ( LWORK.EQ. -1 )
00139 *
00140       INFO = 0
00141       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
00142          INFO = -1
00143       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
00144          INFO = -2
00145       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
00146          INFO = -3
00147       ELSE IF( N.LT.0 ) THEN
00148          INFO = -4
00149       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00150          INFO = -6
00151       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
00152          INFO = -8
00153       END IF
00154 *
00155       IF( INFO.EQ.0 ) THEN
00156          NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
00157          LWKOPT = MAX( 1, ( NB + 1 )*N )
00158          WORK( 1 ) = LWKOPT
00159 *
00160          IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY ) THEN
00161             INFO = -11
00162          END IF
00163       END IF
00164 *
00165       IF( INFO.NE.0 ) THEN
00166          CALL XERBLA( 'CHEGV ', -INFO )
00167          RETURN
00168       ELSE IF( LQUERY ) THEN
00169          RETURN
00170       END IF
00171 *
00172 *     Quick return if possible
00173 *
00174       IF( N.EQ.0 )
00175      $   RETURN
00176 *
00177 *     Form a Cholesky factorization of B.
00178 *
00179       CALL CPOTRF( UPLO, N, B, LDB, INFO )
00180       IF( INFO.NE.0 ) THEN
00181          INFO = N + INFO
00182          RETURN
00183       END IF
00184 *
00185 *     Transform problem to standard eigenvalue problem and solve.
00186 *
00187       CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
00188       CALL CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
00189 *
00190       IF( WANTZ ) THEN
00191 *
00192 *        Backtransform eigenvectors to the original problem.
00193 *
00194          NEIG = N
00195          IF( INFO.GT.0 )
00196      $      NEIG = INFO - 1
00197          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
00198 *
00199 *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
00200 *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
00201 *
00202             IF( UPPER ) THEN
00203                TRANS = 'N'
00204             ELSE
00205                TRANS = 'C'
00206             END IF
00207 *
00208             CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
00209      $                  B, LDB, A, LDA )
00210 *
00211          ELSE IF( ITYPE.EQ.3 ) THEN
00212 *
00213 *           For B*A*x=(lambda)*x;
00214 *           backtransform eigenvectors: x = L*y or U'*y
00215 *
00216             IF( UPPER ) THEN
00217                TRANS = 'C'
00218             ELSE
00219                TRANS = 'N'
00220             END IF
00221 *
00222             CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
00223      $                  B, LDB, A, LDA )
00224          END IF
00225       END IF
00226 *
00227       WORK( 1 ) = LWKOPT
00228 *
00229       RETURN
00230 *
00231 *     End of CHEGV
00232 *
00233       END
 All Files Functions