SUBROUTINE ZHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), WORK( * ) * .. * * Purpose * ======= * * ZHETRI computes the inverse of a complex Hermitian indefinite matrix * A using the factorization A = U*D*U**H or A = L*D*L**H computed by * ZHETRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the details of the factorization are stored * as an upper or lower triangular matrix. * = 'U': Upper triangular, form is A = U*D*U**H; * = 'L': Lower triangular, form is A = L*D*L**H. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the block diagonal matrix D and the multipliers * used to obtain the factor U or L as computed by ZHETRF. * * On exit, if INFO = 0, the (Hermitian) inverse of the original * matrix. If UPLO = 'U', the upper triangular part of the * inverse is formed and the part of A below the diagonal is not * referenced; if UPLO = 'L' the lower triangular part of the * inverse is formed and the part of A above the diagonal is * not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D * as determined by ZHETRF. * * WORK (workspace) COMPLEX*16 array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its * inverse could not be computed. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE COMPLEX*16 CONE, ZERO PARAMETER ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ), $ ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, K, KP, KSTEP DOUBLE PRECISION AK, AKP1, D, T COMPLEX*16 AKKP1, TEMP * .. * .. External Functions .. LOGICAL LSAME COMPLEX*16 ZDOTC EXTERNAL LSAME, ZDOTC * .. * .. External Subroutines .. EXTERNAL XERBLA, ZCOPY, ZHEMV, ZSWAP * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCONJG, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHETRI', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Check that the diagonal matrix D is nonsingular. * IF( UPPER ) THEN * * Upper triangular storage: examine D from bottom to top * DO 10 INFO = N, 1, -1 IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO ) $ RETURN 10 CONTINUE ELSE * * Lower triangular storage: examine D from top to bottom. * DO 20 INFO = 1, N IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO ) $ RETURN 20 CONTINUE END IF INFO = 0 * IF( UPPER ) THEN * * Compute inv(A) from the factorization A = U*D*U**H. * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = 1 30 CONTINUE * * If K > N, exit from loop. * IF( K.GT.N ) $ GO TO 50 * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Invert the diagonal block. * A( K, K ) = ONE / DBLE( A( K, K ) ) * * Compute column K of the inverse. * IF( K.GT.1 ) THEN CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 ) CALL ZHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, ZERO, $ A( 1, K ), 1 ) A( K, K ) = A( K, K ) - DBLE( ZDOTC( K-1, WORK, 1, A( 1, $ K ), 1 ) ) END IF KSTEP = 1 ELSE * * 2 x 2 diagonal block * * Invert the diagonal block. * T = ABS( A( K, K+1 ) ) AK = DBLE( A( K, K ) ) / T AKP1 = DBLE( A( K+1, K+1 ) ) / T AKKP1 = A( K, K+1 ) / T D = T*( AK*AKP1-ONE ) A( K, K ) = AKP1 / D A( K+1, K+1 ) = AK / D A( K, K+1 ) = -AKKP1 / D * * Compute columns K and K+1 of the inverse. * IF( K.GT.1 ) THEN CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 ) CALL ZHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, ZERO, $ A( 1, K ), 1 ) A( K, K ) = A( K, K ) - DBLE( ZDOTC( K-1, WORK, 1, A( 1, $ K ), 1 ) ) A( K, K+1 ) = A( K, K+1 ) - $ ZDOTC( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 ) CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 ) CALL ZHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, ZERO, $ A( 1, K+1 ), 1 ) A( K+1, K+1 ) = A( K+1, K+1 ) - $ DBLE( ZDOTC( K-1, WORK, 1, A( 1, K+1 ), $ 1 ) ) END IF KSTEP = 2 END IF * KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN * * Interchange rows and columns K and KP in the leading * submatrix A(1:k+1,1:k+1) * CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 ) DO 40 J = KP + 1, K - 1 TEMP = DCONJG( A( J, K ) ) A( J, K ) = DCONJG( A( KP, J ) ) A( KP, J ) = TEMP 40 CONTINUE A( KP, K ) = DCONJG( A( KP, K ) ) TEMP = A( K, K ) A( K, K ) = A( KP, KP ) A( KP, KP ) = TEMP IF( KSTEP.EQ.2 ) THEN TEMP = A( K, K+1 ) A( K, K+1 ) = A( KP, K+1 ) A( KP, K+1 ) = TEMP END IF END IF * K = K + KSTEP GO TO 30 50 CONTINUE * ELSE * * Compute inv(A) from the factorization A = L*D*L**H. * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = N 60 CONTINUE * * If K < 1, exit from loop. * IF( K.LT.1 ) $ GO TO 80 * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Invert the diagonal block. * A( K, K ) = ONE / DBLE( A( K, K ) ) * * Compute column K of the inverse. * IF( K.LT.N ) THEN CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 ) CALL ZHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK, $ 1, ZERO, A( K+1, K ), 1 ) A( K, K ) = A( K, K ) - DBLE( ZDOTC( N-K, WORK, 1, $ A( K+1, K ), 1 ) ) END IF KSTEP = 1 ELSE * * 2 x 2 diagonal block * * Invert the diagonal block. * T = ABS( A( K, K-1 ) ) AK = DBLE( A( K-1, K-1 ) ) / T AKP1 = DBLE( A( K, K ) ) / T AKKP1 = A( K, K-1 ) / T D = T*( AK*AKP1-ONE ) A( K-1, K-1 ) = AKP1 / D A( K, K ) = AK / D A( K, K-1 ) = -AKKP1 / D * * Compute columns K-1 and K of the inverse. * IF( K.LT.N ) THEN CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 ) CALL ZHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK, $ 1, ZERO, A( K+1, K ), 1 ) A( K, K ) = A( K, K ) - DBLE( ZDOTC( N-K, WORK, 1, $ A( K+1, K ), 1 ) ) A( K, K-1 ) = A( K, K-1 ) - $ ZDOTC( N-K, A( K+1, K ), 1, A( K+1, K-1 ), $ 1 ) CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 ) CALL ZHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK, $ 1, ZERO, A( K+1, K-1 ), 1 ) A( K-1, K-1 ) = A( K-1, K-1 ) - $ DBLE( ZDOTC( N-K, WORK, 1, A( K+1, K-1 ), $ 1 ) ) END IF KSTEP = 2 END IF * KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN * * Interchange rows and columns K and KP in the trailing * submatrix A(k-1:n,k-1:n) * IF( KP.LT.N ) $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 ) DO 70 J = K + 1, KP - 1 TEMP = DCONJG( A( J, K ) ) A( J, K ) = DCONJG( A( KP, J ) ) A( KP, J ) = TEMP 70 CONTINUE A( KP, K ) = DCONJG( A( KP, K ) ) TEMP = A( K, K ) A( K, K ) = A( KP, KP ) A( KP, KP ) = TEMP IF( KSTEP.EQ.2 ) THEN TEMP = A( K, K-1 ) A( K, K-1 ) = A( KP, K-1 ) A( KP, K-1 ) = TEMP END IF END IF * K = K - KSTEP GO TO 60 80 CONTINUE END IF * RETURN * * End of ZHETRI * END