
Sca/LAPACK Program Style

v0.3, August 2006

August 27, 2006

Sca/LAPACK Program Style
by v0.3, August 2006

1

1 INTRODUCTION CONTENTS

Contents

1 Introduction 2
1.1 High-Level Design Choices . 2
1.2 Reproducibility . 2

2 Copyrights and Licensing 3
2.1 Citing the authors of the software . 3

3 Documentation 3
3.1 Source Code . 3
3.2 LAPACK Users’ Guide . 4
3.3 LAPACK Working Notes (LAWNs) . 4

4 Workspace and Memory Management 5

5 Routine Naming and Design 6
5.1 Routine Naming . 6
5.2 Internal Design and Name Usage . 6
5.3 Error Handling and the Diagnostic Argument INFO . 7
5.4 Determining Machine Arithmetic Parameters . 7
5.5 Determining the Block Size for Block Algorithms . 8

6 Fortran Language Features 9
6.1 Interoperability with C . 10
6.2 Obsolescent Fortran . 10

7 Source Formatting 11
7.1 File Names and Organization . 12
7.2 Order of Arguments . 12
7.3 Argument Descriptions . 12
7.4 Option Arguments . 13
7.5 Problem Dimensions . 13
7.6 Array Arguments . 13

8 Testing and Timing Routines 13
8.1 Testing routines . 14
8.2 Timing routines . 14

9 Suggested Maintenance Projects 14

10 Reference Notes 14

11 Bibliography 15

1 Introduction

The purpose of this document is to facilitate contributions to LAPACK and ScaLAPACK by document-
ing their design and implementation guidelines. The long-term goal is to provide guidelines for both
LAPACK and ScaLAPACK. However, the parallel ScaLAPACK code has more open issues, so this doc-
ument primarily concerns LAPACK. Details on threading and other issues likewise have been deferred
and will be shaped by future contributions discussions.These are style and design guidelines, exceptions
may be allowed if accompanied by sound reasons and good documentation. To enable development
and use of automated tools, rules regarding issues like formatting are far less flexible. Copyright and
licensing rules are completely inflexible; see the section on "Licensing" below.Many parts of the current
code may not live up to these guidelines. Fixes are greatly appreciated. See the section on "Mainte-
nance Projects" and the "TODO" notes in each section.Not all of the guidelines have been completely
decided. Questions to contributors are listed after relevant sections.Please coordinate possible contri-
butions with lapackers@cs.utk.edu and lapackers@cs.berkeley.edu. More development resources are
available at http://www.netlib.org/lapack-dev/ .

2

mailto:lapackers@cs.utk.edu
mailto:lapackers@cs.berkeley.edu
http://www.netlib.org/lapack-dev/

1 INTRODUCTION 1.1 High-Level Design Choices

1.1 High-Level Design Choices

These guidelines follow from some considerations of implementation languages, memory manage-
ments, and performance goals.We do not have the resources or desire to throw away the existing code
and recode the algorithms from scratch in a new language. Our plans are to keep the code primarily
in Fortran. Existing code is primarily in the dialect of Fortran 77 available in the 1990s. New code may
adopt newer language features so long as they

• are widely available in compilers,

• improve ease of use,

• improve ease of maintenance, and

• do not impose a significant cost in performance or memory usage.

Current prohibitions and warnings on new language features are discussed in "Fortran Language Fea-
tures" .Some components and routines may be in written in C. Current C components include

• the reference Extended Precision BLAS implementation, and

• ScaLAPACK’s communication substrate, the PBLAS and BLACS, as well as such support routines
as REDIST.

Future C components will be considered on a case-by-case basis. Interoperability with C is important
but difficult to achieve both simply and portably. Some considerations are listed in "Interoperability
with C".LAPACK strives to accomodate both users who want control over memory allocation as well
as users who want automatic workspace allocation. We have decided not to use dynamic allocation
within LAPACK computational routines. Instead, we will provide a programmatic mechanism to query
routines and determine necessary workspace, see "Workspace Issues". Concerns about memory usage
and performance also drive decisions on language features in "Fortran Language Features" .Our design
should enable writing user-friendlier wrappers in other high-level languages (including full-featured
F95), but the design of these wrappers is not the subject of this document.

1.2 Reproducibility

Reproducing exact results between runs on the same data for debugging or certification is challeng-
ing. We must balance common needs for reproducibility against performance gains from randomized
algorithms and parallel processing. The trade-offs and design considerations are not completely clear
at this point, but we must support reproducible results whenever possible.To allow users to compute
reproducible results whenever a platform allows, the following rules apply to uses of randomization in
LAPACK:

• Use the LAPACK PRNGs (Pseudo-Random Number Generators) like xLARUV and xLARNV.
These are portable routines. When given the same seed, they generate the same numbers on all
platforms.

• Testing and timing code must set the seed to a constant in the source.

• LAPACK library routines also must use a constant seed whenever possible. Constant seeds are not
possible if the code’s randomized performance or correctness relies on not having static bad cases.
If a routine cannot use a static seed, it must allow users to input a seed value in order to support
debugging.

• The impact of tuning parameters on the numerical results must be documented.

We cannot control the reproducibility of tuned platform BLAS. Users should be able to use the refer-
ence BLAS when necessary.There are many unresolved issues regarding reproducing numerical results
on parallel platforms. At the very least, ScaLAPACK must provide options to control communication
and ensure reproducibility for a particular process layout. Discussions of and contributions towards
distributed and shared-memory parallel reproducibility are welcome.

TODO Notes

• Need to test the PRNGs. See "Maintenance Projects".

3

3 DOCUMENTATION

2 Copyrights and Licensing

All code must have the same license. We have chosen the Modified BSD license, available both in the
COPYING file in the next distribution as well as at http://www.opensource.org/licenses/bsd-license.php.Before
a contribution can be accepted into LAPACK or ScaLAPACK, the contributors must submit documenta-
tion that

• states that the contributor grants all necessary copyright and patent licenses of the contribution so
we can include it in LAPACK and ScaLAPACK under the Modified BSD license, and

• declares the contributor to have necessary legal authority to grant the above.

The document makes claims only regarding the contribution to LAPACK, not on any other uses of the
same material. The necessary form is available at http://www.netlib.org/lapack-dev/LAPACK_contributors_agreement.txt.

2.1 Citing the authors of the software

The original authors of the software will be listed in the code first, followed by authors of important
changes. Contributors will be listed in both the source distribution and the Users’ Guide.

3 Documentation

Each type of documentation has a specific purpose. This section provides an overview of what topics
the documentation should address.

Source Code Inform users on how to call a routine.

Users’ Guide Tie routines together and provide examples.

Working Notes Document the mathematical details and design considerations.

3.1 Source Code

Each source file for an exported routine (e.g. SRC/*.f) must contain documentation on how to use the
routine. The documentation should

• briefly describe the routine’s purpose,

• describe each argument,

• optionally provide a reference for further details.

The documentation’s format is explained in "Source Formatting" along with other aspects of source
formatting.

3.2 LAPACK Users’ Guide

The LAPACK Users’ Guide (LUG) provides higher-level information about the routines and their in-
terfaces without the full technical and mathematical details that drive the design. The current LUG
is available through SIAM and electronically at http://www.netlib.org/lapack/lug/index.html.Each
published interface must be incorporated into the LUG. The precise form will depend on the routines.
The goals are to provide user with

• the relationships between routines,

• mathematical and design details needed for users to chose an appropriate routine,

• brief examples of common uses, and

• high-level advice to users.

4

http://www.opensource.org/licenses/bsd-license.php
http://www.netlib.org/lapack-dev/LAPACK_contributors_agreement.txt
http://www.netlib.org/lapack/lug/index.html

4 WORKSPACE AND MEMORY . . . 3.3 LAPACK Working Notes (LAWNs)

The interface documentation from the source code will be reproduced at the end of the LUG. Therefore
there is no need to duplicate this detailed interface documentation in the earlier LUG sections.

Questions to contributors

• Would contributors like template LaTeX sections? Or should we make the entire document avail-
able and ask contributors to send modifications?

TODO Notes

• The LUG needs updating for MR3, the extended refinement routines, etc.

3.3 LAPACK Working Notes (LAWNs)

Details about mathematical derivations and design decisions belong in the LAPACK Working Notes
(LAWNs). These notes will be published through the LAPACK repository at Netlib; the current notes
are available at http://www.netlib.org/lapack/lawns/index.html. We make no restrictions on other
publications of the same material.Every major routine should have a LAWN documenting the algorithm,
error analysis, performance, and testing. LAWNs describing new routines must address the following
points:

• Purpose

• Usage

• Error conditions and returns

• Applicability and restrictions (including arithmetic, see below for current arithmetic restrictions
in LAPACK)

• Discussion of the method and algorithm

• Algorithm design decisions

• Accuracy

• Tuning parameters

• Test cases

• Timing tests

• References

Currently the only arithmetic restrictions are in the eigenvalue routines (IEEE exception handling in
EGR and EBZ algorithms, monotonicity and rounding accuracy in EBZ, guard digits in EDC). For fur-
ther details, grep for "IEEE" and "arithmetic" in the SRC directory.Keep in mind that LAWNs are static
publications, but LAPACK is evolving code. The LAWNs provide snapshots of design decisions. Engi-
neering choices in the routines’ designs may change once the code is reviewed.

4 Workspace and Memory Management

It is natural to ask whether we should dynamically allocate workspace inside LAPACK routines, and
so do away with complicated workspace counting code and asking the user to allocate it. Many users
would like this. However, there are also important users who want to control their own workspace, both
for performance reasons and so to be ensure memory allocation errors cannot occur (e.g. in real-time
control loops). To make everyone happy (except perhaps us developers) we currently plan to handle
this as follows:

5

http://www.netlib.org/lapack/lawns/index.html

5 ROUTINE NAMING AND DESIGN

1. Change all routines that need workspace to be queryable for how much workspace is needed. This
means that users can quickly ask how much space is necessary and handle it appropriately them-
selves, and it will let us more easily write wrappers in various languages that provide automatic
memory allocation. This option is already available in much of LAPACK by using LWORK=-1;
our goal is to extend this feature to all of LAPACK.

2. Routines that call other routines needing workspace will in turn have to query those other routines
to determine the total amount of workspace. In other words, no assumptions about workspace
needs of other routines should be built in. This will both help eliminate bugs and permit inno-
vations and bug fixes that change workspace to be made to one routine without changing lots of
others too.

3. We are not sure how many "levels" of workspace query to provide: a routine could have different
values for

a. the smallest possible workspace for correct functioning

b. the right amount for reasonable speed given various block size values (from querying ILAENV)

c. maximum space for very fast functioning. For example, DC needs 3n2 + O(n) total space, MRRR
needs 2n2 + O(n) and QR needs only n2 + O(n) for the dense symmetric eigenproblem. So a
smart driver could call any of these, depending on workspace.

Options (a), (b) and (c) could be implemented using other negative values of LWORK. This is also dis-
cussed below in the section on "Determining the Block Size for Block Algorithms".The routines xGEESX
and xGGESX are the only exceptions using LWORK for a workspace query. For these routines, the value
of LWORK is dependent upon the dimension of the invariant subspace (SDIM), and is not known on
entry to the routine.We are considering new drivers that split the functionality of xGEESX and xGGESX
into two subroutine calls, so that at the end of the first call all the eigenvalues are known, and the second
routine is given the specific desired subset of these eigenvalues, whose cardinality is then known. This
means both routines could determine their workspace needs in advance.Testing and timing code can
dynamically allocate memory. Arrays larger than some systems’ caches may require dynamic allocation
for some compilers (e.g. Sun’s).

Questions to contributors (and users)

• What style of queries are most useful? In new routines, we have the option of using:

1. An LWORK query for each type of workspace (IWORK, RWORK, CWORK, BWORK).

2. One single query routine modeled after ILAENV which would take the name of the routine
and the type of workspace needed.

3. A separate query routine for each LAPACK procedure that returns the necessary or requested
workspace for each used workspace type. The routines could be named something akin to
SGESVX_WORKSPACE.

Maintaining existing interfaces requires one of the last two choices.

TODO Notes

• Split xGEESX and xGGESX as above.

5 Routine Naming and Design

5.1 Routine Naming

The LAPACK project intends to maintain backwards compatibility. New routines get new names. Fixes
to old routines that preserve the interface can keep the names. If the only change to the interface is to
decrease the amount of workspace needed, the old routine name can be kept.We are no longer limited
to 6 characters for routine names. Underscores are ok. At present, this causes problems in a variety of

6

5 ROUTINE NAMING AND DESIGN 5.2 Internal Design and Name Usage

codes that assume 6 character names when they parse input springs (e.g. ILAENV, XERBLA, xOPLA,
etc.). We are working to address these issues (see "Maintenance Projects").

Questions to contributors

• What criteria should we use when deciding if changes to the definitions of numerical output argu-
ments constitutes an interface changes? There is no single answer, and there are obvious limits, but
we would like some feedback. For example, if we want to change the definition of pivot growth
in linear systems to be measured per column rather than over the entire matrix, should that be
considered a change to the interface?

5.2 Internal Design and Name Usage

Recursion is permitted. But beware of excessive stack usage; it should not be used as a substitute for
workspace allocation as discussed in "Workspace Issues". Roughly speaking, as long as the stack only
grows to O(log n) then there should be no problem. If the alternative is a non-recursive routine that
uses the same space, and if the recursive routine is more readable, prefer the recursive version.We will
use the BLAS and extended BLAS names from BLAST Forum in new code. There is a new BLAS stan-
dard "[blast]", but a partial reference implementation exists only for the extended (and sparse) BLAS.
We would like new LAPACK routines to use the new interface and provide a reference implementa-
tion that simply calls the appropriate old BLAS routine. Over time this will encourage developers and
vendors to migrate to the new BLAS. We will provide an extended BLAS release as part of LAPACK,
since it is needed for the new iterative refinement codes.We prohibit the use of I/O within LAPACK
computational routines, with a natural exception for parallel communication. Policies regarding any
future out-of-core routines will be considered along with the routines. There should be no terminal or
user I/O outside the default XERBLA ("Error Handling").

NoteFor background on low-level library design issues relevant to many modern platforms, refer to
"[shared-lib]".

5.3 Error Handling and the Diagnostic Argument INFO

All documented routines have a diagnostic argument INFO that indicates the success or failure of the
computation, as follows:

• INFO = 0: successful termination

• INFO < 0: illegal value of one or more arguments — no computation performed

• INFO > 0: failure in the course of computation

All driver and auxiliary routines check that input arguments such as N or LDA or option arguments of
type character have permitted values. If an illegal value of the ith argument is detected, the routine sets
INFO = -i, and then calls an error-handling routine XERBLA.The standard version of XERBLA issues an
error message and halts execution, so that no LAPACK routine would ever return to the calling program
with INFO < 0. However, this might occur if a non-standard version of XERBLA is used.

5.4 Determining Machine Arithmetic Parameters

The xLAMCH interfaces for returning machine arithmetic parameters will be maintained and will be
made thread-safe. New code must use xLAMCH.Many Fortran language queries provide equivalent
information. For reference, the table below summarizes the widely available Fortran 95 query functions
that are equivalent to xLAMCH calls.

xLAMCH parameter F95 intrinsic Description
E EPSILON Epsilon
B RADIX Base
N DIGITS Significand digits
M MINEXPONENT Min. exponent

7

5 ROUTINE NAMING AND DESIGN 5.5 Determining the Block Size for Block . . .

xLAMCH parameter F95 intrinsic Description
U TINY Underflow threshold
L MAXEXPONENT Max. exponent
O HUGE Overflow threshold

The two queries "P" and "S" can be derived from F95 intrinsics as follows (example are given for double
precision quantities):

• P: Product of epsilon and the base

EPSILON(0.0d0) * RADIX(0.0d0)

• S: Safe minimum such that 1/xLAMCH(S) does not overflow

SFMIN = TINY(0.0d0)
SMALL = 1.0d0/HUGE(0.0d0)
if (SMALL >= SFMIN) SFMIN = SMALL * (1+EPSILON(0.0d0))

xLAMCH("R") has no corresponding query function in Fortran 95 but grep reveals no use of this query in
LAPACK. Likewise, SLAMC1’s test for round-to-nearest and SLAMC2’s test for compliance to IEEE-754
have no corresponding queries in Fortran 95. Fortran 2003 provides these and additional useful predi-
cates (e.g. IEEE_IS_NAN) when an implementation supports IEEE-754 arithmetic, but these compilers
are not yet widely available.C89 provides similar support in float.h. C99 includes greatly improved sup-
port for IEEE-754 arithmetic in float.h and math.h. This support is in widely available C compilers, but
some system libraries do not fully support fused multiply-add and flag tests.

Note

• Fortran 2003 provides additional queries like NaN detection on implementations of IEEE-754, but
Fortran 2003 compilers are not yet widely available.

• Note that, technically, Fortran 95’s number model does not allow gradual underflow. Many im-
plementations still support it.

5.5 Determining the Block Size for Block Algorithms

LAPACK routines that implement block algorithms need to determine what block size to use. The in-
tention behind the design of LAPACK is that the choice of block size should be hidden from users as
much as possible, but at the same time easily accessible to installers of the package when tuning LA-
PACK for a particular machine.LAPACK routines call an auxiliary enquiry function ILAENV, which
returns the optimal block size to be used as well as other parameters. The version of ILAENV supplied
with the package contains default values that led to good behavior over a reasonable number of our
test machines, but to achieve optimal performance, it may be beneficial to tune ILAENV for your par-
ticular machine environment. Ideally a distinct implementation of ILAENV is needed for each machine
environment (see also Chapter 6 of the LUG). The optimal block size also may depend on

• the routine,

• the combination of option arguments (if any),

• the problem dimensions, and

• the available workspace.

We ultimately plan to determine these values by an automatic tuning process akin to the one used
in ATLAS and related packages.If ILAENV returns a block size of 1, then the routine performs the
unblocked algorithm, calling Level 2 BLAS, and makes no calls to Level 3 BLAS.Some LAPACK routines
require a work array whose size is proportional to the block size (see subsection 5.1.7 of the LUG). The
actual length of the work array is supplied as an argument LWORK. The description of the arguments
WORK and LWORK typically goes as follows:

8

http://www.netlib.org/lapack/lug/node129.html#chapinstall
http://www.netlib.org/lapack/lug/node117.html#subsecworkspace

6 FORTRAN LANGUAGE FEATURES

WORK
(workspace) REAL array, dimension (LWORK)
On exit, if INFO = 0, then WORK(1) returns the optimal
LWORK.

LWORK
(input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).

For optimal performance LWORK >= N*NB, where NB is the
optimal block size returned by ILAENV. The routine
determines the block size to be used by the following
steps: ...

For such a routine, if LWORK >= max(1,N),

• the optimal block size is determined by calling ILAENV;

• if the value of LWORK indicates that enough workspace has been supplied, the routine uses the
optimal block size;

• otherwise, the routine determines the largest block size that can be used with the supplied amount
of workspace;

• if this new block size does not fall below a threshold value (also returned by ILAENV), the routine
uses the new value;

• otherwise, the routine uses the unblocked algorithm.

The minimum value of LWORK that would be needed to use the optimal block size is returned in
WORK(1) (see "Workspace Issues").Thus, the routine uses the largest block size allowed by the amount
of workspace supplied, as long as this is likely to give better performance than the unblocked algorithm.
WORK(1) is not always a simple formula in terms of N and NB.The specification of LWORK gives the
minimum value for the routine to return correct results. If the supplied value is less than the minimum
— indicating that there is insufficient workspace to perform the unblocked algorithm — the value of
LWORK is regarded as an illegal value, and is treated like any other illegal argument value (see sub-
section 5.1.9 of the LUG).If in doubt about how much workspace to supply, users must use the query
mechanism described in "Workspace Issues". That section is still in flux. There is no mechanism that will
work for the entire library at this point, but that is being addressed. The query mechanism will be available for all
routines that use workspace.

6 Fortran Language Features

We have considered what features of Fortran to use beyond those in the F77 dialect we have used so
far, and what features to deprecate. The following summarizes our current plans, based on availability
of Fortran compilers, and sometimes conflicting desires of users for ease of use, high performance, and
memory safety.New code should meet the following guidelines. Assistance in converting existing code
to the guidelines would be gratefully accepted. These guidelines are far more flexible in testing and
timing code.

Use DO WHILE and DO / END DO DO WHILE was adopted by Fortran 90 and is widely available.
Using DO with END DO rather than a numbered CONTINUE makes the code more readable both
by people and parsers.

No new common blocks Currently there are no common blocks in the SRC code, just TESTING and
TIMING. These create thread safety problems, and also create problems in TESTING and TIMING,
because they assume 6 character routine names, a restriction we are eliminating (see below).

No equivalence statements New Fortran language features make them unnecessary for many uses.

No save statements SAVE statements often impose thread safety problems. The next release will pro-
vide SAVE-free versions of xLAMCH, xLACON, and other SAVE-using source routines. xLAMCH
routines will preserve the interface. Removing SAVE statements from xLACON and others would
require changing the interface. Instead, we provide and use functions contributed by Sven Ham-
marling and NAG Ltd. The release notes will provide more information on the new routines.

9

http://www.netlib.org/lapack/lug/node119.html#subsecinfo
http://www.netlib.org/lapack/lug/node119.html#subsecinfo

6 FORTRAN LANGUAGE FEATURES 6.1 Interoperability with C

Use internal procedures rather than statement functions Statement functions are an "obsolescent" For-
tran language feature. See "Obsolescent Fortran" for a full list.

Provide INTERFACE blocks in include files INTERFACE blocks provide argument type-checking within
the Fortran language without needing external tools like ftnchek or NAG’s utilities. See "Source
Formatting" for guidelines about include files.

Do not use assumed-shape arrays in interfaces Assumed-shape argument arrays, those defined like

REAL A(:,:)

add information to the low-level arguments passed into the routine, complicating language inter-
operability. Additionally, passing arrays as assumed-shape arguments may impose performance
and memory costs. The F95 wrappers may use assumed arrays in the style of LAPACK95 "[la-
pack95]", as opposed to LAPACK3E "[lapack3e]".The preferred mechanism for passing arrays is
described in "Source Formatting".

Modules are limited to arbitrary / high-precision routines Cleve Moler tells us that their use would
greatly complicate MATLAB™’s build process. However, we likely will need modules to
provide arbitrary precision versions of LAPACK routines. We will approach this by parsing the
module-free code and automatically generating new code with modules inserted to redefine the
arithmetic. Fortran abstractions available only through modules permit a variety of longer fixed
or variable precision packages to be used (QUAD, ARPREC, MPFR, etc.). Modules may also be
used for the F95 wrappers.

Derived types (structures) cannot appear in interfaces Derived types are Fortran’s structured data type,
and they suffer from many language restrictions.

• They may appear in INTERFACE blocks only when the derived type is defined in another
module.

• Two separate derived type declarations for the same name may be represented differently
unless the SEQUENCE keyword appears. SEQUENCE packs the elements in declaration
order, requiring careful attention to alignment for high performance.

• Fortran prior to F03 does not provide any guarantees for interoperability between derived
types and other languages.

Thus, we cannot use derived types in interfaces or pass them between externally visible routines
without modules. Work on the arbitrary precision versions may require modules for this rea-
son. We will address interoperability concerns at some future point, possibly by relying on F03’s
BIND(C).

Be careful with WHERE masks and FORALL assignments Fortran 95 WHERE masks and FORALL
assignments have strict evaluation semantics. Both require that the mask and right-hand side
be fully evaluated before the WHERE or FORALL is executed. If the mask or right-hand side
is an expression, or if there are data dependencies or possible aliasing issues, the compiler may
dynamically allocate space to hold an intermediate evaluation.

Be careful with array slicing Modern Fortran allows MATLAB™-like ranges and array slicing.
Used with care, these can make code much more readable. However, slicing arrays declared with
LAPACK’s explicit leading dimension style (see "Array Arguments") may lead to intermediate
copies. Many compilers provide options to warn when the particular compiler decides to use
intermediate allocations, but the decision varies according to the compiler, the sequence of opti-
mizations applied, and the language requirements. If in doubt, write a loop.

Use BLAS routines rather than intrinsics (e.g. MATMUL) For similar reasons as the above. We know
the memory behavior of the BLAS, but not of the compilers’ array intrinsics.

6.1 Interoperability with C

We must mix C and Fortran internally to call the reference extended precision BLAS as well as ScaLA-
PACK’s PBLAS and BLACS substrate. We are actively investigating how best to handle C and Fortran
interoperability both internally and for external interfaces. We would prefer a light-weight solution as

10

6 FORTRAN LANGUAGE FEATURES 6.2 Obsolescent Fortran

opposed to systems like Babel "[babel]".Currently, we assume the following types share the same low-
level machine representation. C89 does not provide complex numbers or operators, but C99 guarantees
the associations between C89 and C99 below.

Fortran C99 C89
INTEGER int int
REAL float float
DOUBLE PRECISION double double
COMPLEX float _Complex float[2]
DOUBLE COMPLEX double _Complex double[2]

Thus, we assume that an array COMPLEX A(5, 6) on the Fortran side corresponds to an array float
_Complex a[30] in C99 and float a[60] in C89. The (2,3) entry of the Fortran A would be located at a[2 +
3*5] in C99. In C89, the real part would be located at a[2*(2 + 3*5)], and the imaginary part at a[2*(2 +
3*5)+1].One prohibition to types in cross-language interfaces must apply:

Do not use C’s enum in header files that will be parsed by C++ C specifies that all enums are the same
size. C++ explicitly allows different enums to have different sizes. Many compilers happen to use
the C definition in C++, but that is not guaranteed.

6.2 Obsolescent Fortran

The following is an incomplete list of features declared obsolescent by or deleted from the 1995 and
2003 Fortran standards. If the item is listed as "not used", then they almost certainly do not appear in
LAPACK. If the item is "likely not used", then searching has not turned up instances, but we are not
completely sure.

Real DO variables Obsolescent in Fortran 1995, deleted in Fortran 2003. Likely not used in LAPACK.

Branching to an END IF from outside the IF block Obsolescent in Fortran 1995, deleted in Fortran
2003. Likely not used in LAPACK. Can be replaced by a CONTINUE after the END IF.

PAUSE Obsolescent in Fortran 1995, deleted in Fortran 2003. Likely not used in LAPACK.

ASSIGN and assigned GO TO statements Obsolescent in Fortran 1995, deleted in Fortran 2003. Likely
not used in LAPACK.

The H edit descriptor Obsolescent in Fortran 1995, deleted in Fortran 2003. Not used in LAPACK.

Arithmetic IF statements Obsolescent in Fortran 2003. (We have not searched for these.)

Termination of multiple DO loops on the same statement Obsolescent in Fortran 2003. (We have not
searched for these.)

Using one CONTINUE or statement for multiple DO loops Obsolescent in Fortran 2003. (We have
not searched for these.)

Alternate returns Obsolescent in Fortran 2003. Likely not used in LAPACK.

Computed GO TO Obsolescent in Fortran 2003. There are a few computed GO TOs in xLACON and
xLACN2, at least.

Statement functions Obsolescent in Fortran 2003. Replace with internal procedures (CONTAINS).
Used as CABS1 and ZABS1, at least.

DATA statements intermixed with executable statements Obsolescent in Fortran 2003. Likely not used
in LAPACK.

Assumed length character functions Obsolescent in Fortran 2003. Not used in LAPACK.

Fixed-format source Obsolescent in Fortran 2003. We do not expect compilers to forget how to parse
fixed-format source, so we do not prohibit its use.

11

7 SOURCE FORMATTING

CHARACTER*len Obsolescent in Fortran 2003. Replace with CHARACTER(len). The CHARAC-
TER*1 form currently is used for option arguments.

New code must not use these features, and existing code should have them removed.

TODO Notes

• Computed GO TOs in xLACON and xLACN2 need removed. See "Maintenance Projects".

• We need to consider converting the statement functions CABS1 and ZABS1 either to far more
verbose internal functions (possibly in an INCLUDEd file) or to open definitions within an internal
module. See "Maintenance Projects".

• Replace CHARACTER*1 with CHARACTER(1) or just CHARACTER. See "Maintenance Projects".

7 Source Formatting

In general, follow existing LAPACK style. The LAPACK routines conform to a single set of conventions
for their design and documentation. To accomodate ease of parsing just described, we will insist on a
uniform format.The structure of a LAPACK routine includes:

a. the SUBROUTINE or FUNCTION statement, followed by statements declaring the type and dimen-
sions of the arguments;

b. an IMPLICIT NONE declaration;

c. a summary of the Purpose of the routine;

d. descriptions of each of the Arguments in the order of the argument list;

e. (optionally) Further Details (only in the code, not in the generated LUG pages in Part 2)

f. Internal Parameters if any are used (only in the code, not in the generated LUG pages in Part 2).

We are no longer limited to 6 characters for variable names, and underscores are ok.

7.1 File Names and Organization

Computational routines and drivers are placed in the SRC directory of the LAPACK distribution. Each
file holds one routine. Testing and timing codes are in subdirectories under TESTING and TIMING,
respectively. More information about testing and timing codes is in "Testing and Timing".Fortran sources
in fixed format and using only Fortran 77 features shall have the extension ".f".Fortran files designed to
be included in other source files, say for defining common constants, shall have extension ".fh". Such
files must be formatted for both fixed- and free-format source. There will be no characters in the first six
columns, and lines will be at most 72 characters wide. Do not use continuations in include files. These
files are to be included using the now-standard Fortran INCLUDE statement and not the C preprocessor.
We are not supporting C preprocessing in Fortran at this time.

7.2 Order of Arguments

Arguments of an LAPACK routine appear in the following order:

1. arguments specifying options;

2. problem dimensions;

3. array or scalar arguments defining the input data; some of them may be overwritten by results;

4. other array or scalar arguments returning results;

5. work arrays (and associated array dimensions);

6. diagnostic argument INFO.

This is not a hard and fast rule. It may make sense to cluster arguments according to other considera-
tions.

12

7 SOURCE FORMATTING 7.3 Argument Descriptions

7.3 Argument Descriptions

The style of the argument descriptions is illustrated by the following example:

N
(input) INTEGER
The number of columns of the matrix A. N >= 0.

A
(input/output) REAL array, dimension (LDA,N)
On entry, the m-by-n matrix to be factored. On exit, the
factors L and U from the factorization A = P*L*U; the unit
diagonal elements of L are not stored.

The description of each argument gives:

1. a classification of the argument as (input), (output), (input/output), (input or output), (workspace)
or (workspace/output);

2. the type of the argument;

3. (for an array) its dimension(s);

4. a specification of the value(s) that must be supplied for the argument (if it’s an input argument), or
of the value(s) returned by the routine (if it’s an output argument), or both (if it’s an input/output
argument). In the last case, the two parts of the description are introduced by the phrases "On
entry" and "On exit".

5. (for a scalar input argument) any constraints that the supplied values must satisfy (such as "N >=
0" in the example above).

7.4 Option Arguments

Arguments specifying options are usually of type CHARACTER(1). The meaning of each valid value is
given, as in this example:

UPLO
(input) CHARACTER(1)

= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

The corresponding lower-case characters may be supplied (with the same meaning), but any other value
is illegal (see subsection 5.1.9 of the LUG).A longer character string can be passed as the actual argument,
making the calling program more readable, but only the first character is significant; this is a standard
feature of Fortran 77. For example:

CALL SPOTRS(’upper’, . . .)

7.5 Problem Dimensions

It is permissible for the problem dimensions to be passed as zero, in which case the computation (or part
of it) is skipped. Negative dimensions are regarded as erroneous.

7.6 Array Arguments

Each two-dimensional array argument is immediately followed in the argument list by its leading di-
mension, whose name has the form LD<array-name>. For example:

A
(input/output) REAL/COMPLEX array, dimension (LDA,N)
...

LDA
(input) INTEGER
The leading dimension of the array A. LDA max(1,M).

13

http://www.netlib.org/lapack/lug/footnode.html#foot19489
http://www.netlib.org/lapack/lug/footnode.html#foot19490
http://www.netlib.org/lapack/lug/node119.html#subsecinfo

9 SUGGESTED MAINTENANCE PROJECTS

It should be assumed, unless stated otherwise, that vectors and matrices are stored in one- and two-
dimensional arrays in the conventional manner. That is, if an array X of dimension (N) holds a vector
x, then X(i) holds x_i for i = 1, …, n. If a two-dimensional array A of dimension (LDA,N) holds
an m-by-n matrix A, then A(i,j) m). See Section 5.3 of the LUG for more about storage of matrices.Note
that array arguments are usually declared in the software as assumed-size arrays (last dimension *), for
example:

REAL A(LDA, *)

although the documentation gives the dimensions as (LDA,N). The latter form is more informative
since it specifies the required minimum value of the last dimension. However an assumed-size array
declaration has been used in the software, in order to overcome some limitations in the Fortran 77
standard. In particular it allows the routine to be called when the relevant dimension (N, in this case) is
zero. However actual array dimensions in the calling program must be at least 1 (LDA in this example).

8 Testing and Timing Routines

TODO Note

• Describe the different levels of testing: torture, build, and deployment/installation.

• Document the TESTING/ and TIMING/ directory contents, and the dependencies between rou-
tines. It’s ornate and nasty.

• Separating and documenting the test matrix library (TESTING/MATGEN) would be very useful.
See "Maintenance Projects".

8.1 Testing routines

• Test with various NB

• If the new code replaces a current implementation, ensure it passes the current tests.

• If the code introduces a new interface,

– test all the functionality for typical inputs,

– test any extra accuracy claims with a few examples,

– test all the possible INFO returns, and

– test with all relevant dimensions equal to zero.

• All testing routines should be deterministic. Seeds for generating pseudorandom numbers must
be constant to allow for debugging. See the section on "Reproducibility".

8.2 Timing routines

In the future timing will not be a default part of the installation procedure, but optional. If the routine
is providing a new function, or is a better version of an old routine that is remaining in the library, new
timing code should be added to the existing code. If the new routine simply replaces an old routine,
the existing timing code can be used. For example, the new QR and QZ routines will use the old timing
code.

9 Suggested Maintenance Projects

List of projects we would greatly appreciate someone handling, and that make for a good introduction to
the code. They are time-consuming jobs but they do not require a deep familiarity with the mathematics
or algorithms within LAPACK.

• Ensure IMPLICIT NONE is in all routines, and add necessary declarations.

14

http://www.netlib.org/lapack/lug/node121.html#secstorage

REFERENCES

• Remove COMMON blocks.

• Replace obsolescent language features.

• Replace fixed-length CHARACTER*6s throughout. Such declarations that appear in argument
lists can be replaced by variable-length strings (CHARACTER(*)) without harm. Fixing local ar-
rays and common block declarations will take more work. The testing and timing code has the
most serious issues.

• Make the testing and timing code useful for other developers. It would be widely useful if outside
implementations could run in exactly the same test and timing harness as LAPACK routines. This
would provide one standard for comparison.

• Clean up the build system. Distributors may appreciate some form of automatic configuration.
The GNU autoconf system does not handle cross-compilation well, and that is required for some
resource-constrained platforms like vector machines and embedded systems. Portable linker scripts
could be useful for controlling which symbols are exported; see "[shared-lib]" for examples on ELF-
based systems.

• Add tests for the random number generators that compare the first, say, 1000 generated numbers
to 1000 reference numbers.

10 Reference Notes

On-line copies of the Fortran 66, Fortran 77 and MIL-STD 1753 documents are available through http://www.fortran.com/-
stds_docs.html. The Fortran 95 standard is insanely expensive, but the contents are summarized in
"[f95handbook]".The Fortran 2003 standard is available for around $30 electronically from ANSI. The "Fi-
nal Committee Draft", which is essentially the same as the standard, is available at http://j3-fortran.org/-
doc/standing/2003/007.pdf and http://std.dkuug.dk/jtc1/sc22/open/n3661.pdf. The 1999 C stan-
dard also is available electronically through ANSI for a reasonable price.

11 Bibliography

[1] [f95handbook] Adams, Bainerd, Martin, Smith, and Wegener. Fortran 95 Handbook;
Complete ISO/ANSI Reference. MIT Press. ISBN 0-262-51096-0.

[2] [blast] Blackford, et al. Basic Linear Algebra Subprograms Technical Forum
Standard. International Journal of High Performance Computing, 15(3-4), 2001.
http://www.netlib.org/blas/blast-forum/

[3] [lapack95] Barker, Blackford, Dongarra, Du Croz, Hammarling, Marinova, Wasniewski,
and Yalamov. LAPACK95 Users’ Guide. SIAM, 2001. http://www.netlib.org/lapack95/

[4] [lapack3e] Anderson. LAWN 158: LAPACK3E - A Fortran 90-enhanced version of LA-
PACK. http://www.netlib.org/lapack3e/lawn158.pdf

[5] [shared-lib] Drepper. How To Write Shared Libraries.
http://people.redhat.com/drepper/dsohowto.pdf

[6] [babel] Dahlgren, Epperly, Kumfert, and Leek. Babel Users’ Guide. 2005.
http://www.llnl.gov/casc/components/docs.html

15

http://www.fortran.com/stds_docs.html
http://www.fortran.com/stds_docs.html
http://j3-fortran.org/doc/standing/2003/007.pdf
http://j3-fortran.org/doc/standing/2003/007.pdf
http://std.dkuug.dk/jtc1/sc22/open/n3661.pdf

	Introduction
	High-Level Design Choices
	Reproducibility

	Copyrights and Licensing
	Citing the authors of the software

	Documentation
	Source Code
	LAPACK Users' Guide
	LAPACK Working Notes (LAWNs)

	Workspace and Memory Management
	Routine Naming and Design
	Routine Naming
	Internal Design and Name Usage
	Error Handling and the Diagnostic Argument INFO
	Determining Machine Arithmetic Parameters
	Determining the Block Size for Block Algorithms

	Fortran Language Features
	Interoperability with C
	Obsolescent Fortran

	Source Formatting
	File Names and Organization
	Order of Arguments
	Argument Descriptions
	Option Arguments
	Problem Dimensions
	Array Arguments

	Testing and Timing Routines
	Testing routines
	Timing routines

	Suggested Maintenance Projects
	Reference Notes
	Bibliography

