org.netlib.lapack
Class Dspgv
java.lang.Object
org.netlib.lapack.Dspgv
public class Dspgv
- extends java.lang.Object
Following is the description from the original
Fortran source. For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* DSPGV computes all the eigenvalues and, optionally, the eigenvectors
* of a real generalized symmetric-definite eigenproblem, of the form
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
* Here A and B are assumed to be symmetric, stored in packed format,
* and B is also positive definite.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* Specifies the problem type to be solved:
* = 1: A*x = (lambda)*B*x
* = 2: A*B*x = (lambda)*x
* = 3: B*A*x = (lambda)*x
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangles of A and B are stored;
* = 'L': Lower triangles of A and B are stored.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* AP (input/output) DOUBLE PRECISION array, dimension
* (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, the contents of AP are destroyed.
*
* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* B, packed columnwise in a linear array. The j-th column of B
* is stored in the array BP as follows:
* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
*
* On exit, the triangular factor U or L from the Cholesky
* factorization B = U**T*U or B = L*L**T, in the same storage
* format as B.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
* eigenvectors. The eigenvectors are normalized as follows:
* if ITYPE = 1 or 2, Z**T*B*Z = I;
* if ITYPE = 3, Z**T*inv(B)*Z = I.
* If JOBZ = 'N', then Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: DPPTRF or DSPEV returned an error code:
* <= N: if INFO = i, DSPEV failed to converge;
* i off-diagonal elements of an intermediate
* tridiagonal form did not converge to zero.
* > N: if INFO = n + i, for 1 <= i <= n, then the leading
* minor of order i of B is not positive definite.
* The factorization of B could not be completed and
* no eigenvalues or eigenvectors were computed.
*
* =====================================================================
*
* .. Local Scalars ..
Constructor Summary |
Dspgv()
|
Method Summary |
static void |
dspgv(int itype,
java.lang.String jobz,
java.lang.String uplo,
int n,
double[] ap,
int _ap_offset,
double[] bp,
int _bp_offset,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
intW info)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Dspgv
public Dspgv()
dspgv
public static void dspgv(int itype,
java.lang.String jobz,
java.lang.String uplo,
int n,
double[] ap,
int _ap_offset,
double[] bp,
int _bp_offset,
double[] w,
int _w_offset,
double[] z,
int _z_offset,
int ldz,
double[] work,
int _work_offset,
intW info)