C C THIS DRIVER TESTS EISPACK FOR THE CLASS OF REAL TRIDIAGONAL C MATRICES SUMMARIZING THE FIGURES OF MERIT FOR ALL PATHS. C C THIS DRIVER IS CATALOGUED AS EISPDRV4(RTSUMARY). C C THE DIMENSION OF A SHOULD BE NM BY 3. C THE DIMENSION OF Z SHOULD BE NM BY NM. C THE DIMENSION OF W,D,E,E2,IND,RV1,RV2,RV3,RV4,RV5,RV6, C W1, AND W2 SHOULD BE NM. C HERE NM = 20. C REAL Z( 20, 20),A( 20, 3),W( 20),D( 20),E( 20), X E2( 20),RV1( 20),RV2( 20),RV3( 20),RV4( 20),RV5( 20), X RV6( 20),W1( 20),W2( 20),TCRIT( 8),EPSLON,RESDUL,MAXEIG, X MAXDIF,U,LB,UB,EPS1,DFL REAL XUB,XLB INTEGER IND( 20),IERR( 6),ERROR DATA IREAD1/1/,IREADC/5/,IWRITE/6/ C OPEN(UNIT=IREAD1,FILE='FILE39') OPEN(UNIT=IREADC,FILE='FILE40') REWIND IREAD1 REWIND IREADC C NM = 20 LCOUNT = 0 WRITE(IWRITE,1) 1 FORMAT(1H1,19X,57H EXPLANATION OF COLUMN ENTRIES FOR THE SUMMARY S XTATISTICS//1H ,95(1H-)/96H ORDER TQL2 TQLRAT IMTQL2 IMTQL1 LB X UB M IMTQLV TSTURM BISECT M1 NO TRIDIB /1H , X95(1H-)//48H UNDER 'ORDER' IS THE ORDER OF EACH TEST MATRIX. // X95H UNDER 'TQL2 TQLRAT' ARE THREE NUMBERS. THE FIRST NUMBER, AN X INTEGER, IS THE ABSOLUTE SUM OF/ X61H THE ERROR FLAGS RETURNED SEPARATELY FROM TQL2 AND TQLRAT., X34H THE SECOND NUMBER IS THE MEASURE/ X62H OF PERFORMANCE BASED UPON THE RESIDUAL COMPUTED FOR THE TQL2, X25H PATH. THE THIRD NUMBER / X62H MEASURES THE AGREEMENT OF THE EIGENVALUES FROM THE TQL2 AND, X16H TQLRAT PATHS. // X95H UNDER 'IMTQL2 IMTQL1' ARE THREE NUMBERS WITH MEANING LIKE THOS XE UNDER 'TQL2 TQLRAT'. // X95H UNDER 'LB' AND 'UB' ARE THE INPUT VARIABLES SPECIFYING THE INT XERVAL TO BISECT AND TSTURM. // X61H UNDER 'M' IS THE NUMBER OF EIGENVALUES DETERMINED BY BISECT, X30H AND TSTURM THAT LIE IN THE /18H INTERVAL (LB,UB).// X95H UNDER EACH OF 'IMTQLV', 'TSTURM', 'BISECT', AND 'TRIDIB' ARE T XWO NUMBERS. THE FIRST NUMBER, ) WRITE(IWRITE,2) 2 FORMAT( X95H AN INTEGER, IS THE ABSOLUTE SUM OF THE ERROR FLAGS RETURNED FR XOM THE RESPECTIVE PATH. / X95H THE SECOND NUMBER IS THE MEASURE OF PERFORMANCE BASED UPON THE X RESIDUAL COMPUTED FOR THE PATH.// X95H UNDER 'M1' AND 'NO' ARE THE VARIABLES SPECIFYING THE LOWER BOU XNDARY INDEX AND THE NUMBER / X28H OF EIGENVALUES TO TRIDIB. // X62H -1.0 AS THE MEASURE OF PERFORMANCE IS PRINTED IF AN ERROR IN, X27H THE CORRESPONDING PATH HAS / X47H PREVENTED THE COMPUTATION OF THE EIGENVECTORS. // X62H THE TQL2 PATH USES THE EISPACK CODES FIGI2-TQL2 . / X62H THE TQLRAT PATH USES THE EISPACK CODES FIGI -TQLRAT. / X62H THE IMTQL2 PATH USES THE EISPACK CODES FIGI2-IMTQL2, / X38H AS CALLED FROM DRIVER SUBROUTINE RT. / X62H THE IMTQL1 PATH USES THE EISPACK CODES FIGI -IMTQL1, / X38H AS CALLED FROM DRIVER SUBROUTINE RT. / X63H THE IMTQLV PATH USES THE EISPACK CODES FIGI -IMTQLV-TINVIT X ,8H-BAKVEC.) WRITE(IWRITE,3) 3 FORMAT( X64H THE TSTURM PATH USES THE EISPACK CODES FIGI -TSTURM-BAKVEC X. / X63H THE BISECT PATH USES THE EISPACK CODES FIGI -BISECT-TINVIT X ,8H-BAKVEC. / X63H THE TRIDIB PATH USES THE EISPACK CODES FIGI -TRIDIB-TINVIT X ,8H-BAKVEC. /) WRITE(IWRITE,15) 15 FORMAT(1X,21HS.P. VERSION 04/15/83 ) 5 FORMAT( 53H1 TABULATION OF THE ERROR FLAG ERROR AND THE , X 31HMEASURE OF PERFORMANCE Y FOR /5X, X 56HTHE EISPACK CODES. THIS RUN DISPLAYS THESE STATISTICS , X 33H FOR REAL TRIDIAGONAL MATRICES. / X 55H0ORDER TQL2 TQLRAT IMTQL2 IMTQL1 LB UB M , X 40HIMTQLV TSTURM BISECT M1 NO TRIDIB ) 10 CALL RMATIN(NM,N,A) READ(IREADC,50) MM,LB,UB,M11,NO 50 FORMAT(I4,2D24.16,2(4X,I4)) C C MM,LB,UB,M11, AND NO ARE READ FROM SYSIN AFTER THE MATRIX IS C GENERATED. MM,LB, AND UB SPECIFY TO BISECT THE MAXIMUM C NUMBER OF EIGENVALUES AND BOUNDS FOR THE INTERVAL WHICH IF TO C BE SEARCHED. M11 AND NO SPECIFY TO TRIDIB THE LOWER BOUNDARY C INDEX AND THE NUMBER OF DESIRED EIGENVALUES. C DO 230 ICALL = 1,10 C C IF TQLRAT PATH (LABEL 80) IS TAKEN THEN TQL2 PATH (LABEL 70) C MUST ALSO BE TAKEN IN ORDER THAT THE MEASURE OF PERFORMANCE BE C MEANINGFUL. C IF IMTQL1 PATH (LABEL 85) IS TAKEN THEN IMTQL2 PATH (LABEL 75) C MUST ALSO BE TAKEN IN ORDER THAT THE MEASURE OF PERFORMANCE BE C MEANINGFUL. C IF TQL2 (IMTQL2) PATH FAILS, THEN TQLRAT (IMTQL1) PATH IS C OMITTED AND PRINTOUT FLAGGED WITH -1.0. C GO TO (70,75,80,85,89,90,95,230,110,230), ICALL C C RTWZ USING TQL2 C 70 ICT = 1 CALL FIGI2(NM,N,A,W,E,Z,ERROR) IERR(ICT) = ERROR IF( ERROR .NE. 0 ) GO TO 200 CALL TQL2(NM,N,W,E,Z,ERROR) IERR(ICT) = ERROR M = ERROR - 1 IF( ERROR .NE. 0 ) GO TO 190 DO 71 I = 1,N W1(I) = W(I) 71 CONTINUE M = N GO TO 190 C C RTWZ USING IMTQL2 C INVOKED FROM DRIVER SUBROUTINE RT. C 75 ICT = 2 CALL RT(NM,N,A,W,1,Z,E,ERROR) IERR(ICT) = ERROR IF( ERROR .GT. N ) GO TO 200 M = ERROR - 1 IF( ERROR .NE. 0 ) GO TO 190 DO 78 I = 1,N W2(I) = W(I) 78 CONTINUE M = N GO TO 190 C C RTW USING TQLRAT C 80 ICT = 7 IF( IERR(1) .NE. 0 ) GO TO 200 CALL FIGI(NM,N,A,W,E,E2,ERROR) CALL TQLRAT(N,W,E2,ERROR) IERR(1) = ERROR IF( ERROR .NE. 0 ) GO TO 200 MAXEIG = 0.0E0 MAXDIF = 0.0E0 DO 81 I = 1,N IF( ABS(W(I)) .GT. MAXEIG ) MAXEIG = ABS(W(I)) U = ABS(W1(I) - W(I)) IF( U .GT. MAXDIF ) MAXDIF = U 81 CONTINUE IF( MAXEIG .EQ. 0.0E0 ) MAXEIG = 1.0E0 DFL = 10 * N TCRIT(7) = MAXDIF/EPSLON(MAXEIG*DFL) GO TO 230 C C RTW USING IMTQL1 C INVOKED FROM DRIVER SUBROUTINE RT. C 85 ICT = 8 IF( IERR(2) .NE. 0 ) GO TO 200 CALL RT(NM,N,A,W,0,Z,E,ERROR) IERR(2) = ERROR MAXEIG = 0.0E0 MAXDIF = 0.0E0 DO 86 I = 1,N IF( ABS(W(I)) .GT. MAXEIG ) MAXEIG = ABS(W(I)) U = ABS(W2(I) - W(I)) IF( U .GT. MAXDIF ) MAXDIF = U 86 CONTINUE IF( MAXEIG .EQ. 0.0E0 ) MAXEIG = 1.0E0 DFL = 10 * N TCRIT(8) = MAXDIF/EPSLON(MAXEIG*DFL) GO TO 230 C C RTW1Z USING ( USAGE HERE COMPUTES ALL THE EIGENVALUES ) C 89 ICT = 3 CALL FIGI(NM,N,A,D,E,E2,ERROR) IERR(ICT) = IABS(ERROR) IF( ERROR .NE. 0 ) GO TO 200 CALL IMTQLV(N,D,E,E2,W,IND,ERROR,RV1) IERR(ICT) = ERROR M = N IF( ERROR .NE. 0 ) M = ERROR - 1 CALL TINVIT(NM,N,D,E,E2,M,W,IND,Z,ERROR,RV1,RV2,RV3,RV4,RV6) IERR(ICT) = IERR(ICT) + IABS(ERROR) CALL BAKVEC(NM,N,A,E,M,Z,ERROR) IERR(ICT) = IERR(ICT) + ERROR GO TO 190 C C RT1W1Z USING TSTURM C 90 ICT = 4 EPS1 = 0.0E0 CALL FIGI(NM,N,A,D,E,E2,ERROR) IERR(ICT) = IABS(ERROR) IF( ERROR .NE. 0 ) GO TO 200 CALL TSTURM(NM,N,EPS1,D,E,E2,LB,UB,MM,M,W,Z,ERROR, X RV1,RV2,RV3,RV4,RV5,RV6) IERR(ICT) = ERROR XLB = LB XUB = UB IERR(ICT) = ERROR IF( ERROR .EQ. 3*N + 1 ) GO TO 200 IF( ERROR .GT. 4*N ) M = ERROR - 4*N - 1 CALL BAKVEC(NM,N,A,E,M,Z,ERROR) IERR(ICT) = IERR(ICT) + ERROR GO TO 190 C C RT1W1Z USING BISECT AND TINVIT C 95 ICT = 5 EPS1 = 0.0E0 CALL FIGI(NM,N,A,D,E,E2,ERROR) IERR(ICT) = IABS(ERROR) IF( ERROR .NE. 0 ) GO TO 200 CALL BISECT(N,EPS1,D,E,E2,LB,UB,MM,M,W,IND,ERROR,RV4,RV5) IERR(ICT) = ERROR MBISCT = M XLB = LB XUB = UB IF( ERROR .NE. 0 ) GO TO 200 CALL TINVIT(NM,N,D,E,E2,M,W,IND,Z,ERROR,RV1,RV2,RV3,RV4,RV6) IERR(ICT) = IABS(ERROR) CALL BAKVEC(NM,N,A,E,M,Z,ERROR) IERR(ICT) = IERR(ICT) + ERROR GO TO 190 C C RT1W1Z USING TRIDIB AND TINVIT C 110 ICT = 6 EPS1 = 0.0E0 CALL FIGI(NM,N,A,D,E,E2,ERROR) IERR(ICT) = IABS(ERROR) IF( ERROR .NE. 0 ) GO TO 200 CALL TRIDIB(N,EPS1,D,E,E2,LB,UB,M11,NO,W,IND,ERROR,RV4,RV5) IERR(ICT) = ERROR IF( ERROR .NE. 0 ) GO TO 200 M = NO CALL TINVIT(NM,N,D,E,E2,M,W,IND,Z,ERROR,RV1,RV2,RV3,RV4,RV6) IERR(ICT) = IABS(ERROR) CALL BAKVEC(NM,N,A,E,M,Z,ERROR) IERR(ICT) = IERR(ICT) + ERROR C 190 IF( M .EQ. 0 .AND. ERROR .NE. 0 ) GO TO 200 CALL RTWZR(NM,N,M,A,W,Z,RV1,RESDUL) DFL = 10 * N TCRIT(ICT) = RESDUL/EPSLON(DFL) GO TO 230 200 TCRIT(ICT) = -1.0E0 230 CONTINUE C IF( MOD(LCOUNT,35) .EQ. 0 ) WRITE(IWRITE,5) LCOUNT = LCOUNT + 1 WRITE(IWRITE,240) N,IERR(1),TCRIT(1),TCRIT(7),IERR(2),TCRIT(2), X TCRIT(8),XLB,XUB,MBISCT,(IERR(I),TCRIT(I),I=3,5), X M11,NO,IERR(6),TCRIT(6) 240 FORMAT(I4,2(I3,2F6.3),2(1PE8.0),I3,3(I3,0PF6.3),3I3,F6.3) GO TO 10 END SUBROUTINE RTWZR(NM,N,M,A,W,Z,NORM,RESDUL) C REAL NORM(M), W(M), A(NM,3), Z(NM,M), NORMA, TNORM, X S, SUM, SUMA, SUMZ, RESDUL C C THIS SUBROUTINE FORMS THE 1-NORM OF THE RESIDUAL MATRIX C A*Z-Z*DIAG(W) WHERE A IS A REAL NON-SYMMETRIC TRIDIAGONAL C MATRIX, W IS A VECTOR WHICH CONTAINS M EIGENVALUES OF A, C AND Z IS AN ARRAY WHICH CONTAINS THE M CORRESPONDING C EIGENVECTORS OF A. ALL NORMS APPEARING IN THE COMMENTS BELOW C ARE 1-NORMS. C C THIS SUBROUTINE IS CATALOGUED AS EISPDRV4(RTWZR). C C INPUT. C C NM IS THE ROW DIMENSION OF TWO-DIMENSIONAL ARRAY PARAMETERS C AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT; C C N IS THE ORDER OF THE MATRIX A; C C M IS THE NUMBERS OF EIGENVECTORS WHOSE RESIDUALS ARE DESIRED; C C A(N,3) IS AN ARRAY WHICH CONTAINS IN ITS COLUMNS THE C SUBDIAGONAL,DIAGONAL AND SUPERDIAGONAL OF THE SYMMETRIC C TRIDIAGONAL MATRIX. THE SUBDIAGONAL BEGINS AT A(2,1), THE C SUPERDIAGONAL BEGINS AT A(1,3) AND A(1,1) AND A(N,3) C ARE ARBITRARY; C C W(M) IS A VECTOR WHOSE FIRST M COMPONENTS CONTAIN EIGENVALUES C OF A; C C Z(NM,M) IS AN ARRAY WHOSE FIRST M COLUMNS CONTAIN THE C EIGENVECTORS OF A CORRESPONDING TO THE EIGENVALUES IN W. C C OUTPUT. C C Z(NM,M) IS AN ARRAY WHICH CONTAINS THE NORMALIZED C APPROXIMATE EIGENVECTORS OF A. THE EIGENVECTORS C ARE NORMALIZED USING THE 1-NORM IN SUCH A WAY C THAT THE FIRST ELEMENT WHOSE MAGNITUDE IS LARGER C THAN THE NORM OF THE EIGENVECTOR DIVIDED BY N IS C POSITIVE; C C NORM(M) IS AN ARRAY SUCH THAT FOR EACH K C NORM(K) = !!A*Z(K)-Z(K)*W(K)!!/(!!A!!*!!Z(K)!!) C WHERE Z(K) IS THE K-TH EIGENVECTOR; C C RESDUL IS THE REAL NUMBER C !!A*Z-Z*DIAG(W)!!/(!!A!!*!!Z!!). C C ---------------------------------------------------------------- C RESDUL = 0.0E0 IF( M .EQ. 0 ) RETURN NORMA = 0.0E0 C DO 40 I=1,N J = MIN0(N,I+1) SUMA = 0.0E0 LSTART = MAX0(1,I+2-N) LSTOP = MIN0(3,I+1) C DO 10 L=LSTART,LSTOP SUMA = SUMA + ABS(A(J,L)) 10 J = J-1 C 40 NORMA = AMAX1(SUMA,NORMA) C IF(NORMA .EQ. 0.0E0) NORMA = 1.0E0 C DO 120 I=1,M S = 0.0E0 SUMZ = 0.0E0 C DO 80 L=1,N SUM = -W(I)*Z(L,I) SUMZ = SUMZ + ABS(Z(L,I)) J = MAX0(0,L-2) KSTOP = MIN0(3,N+2-L) KSTART = MAX0(1,3-L) C DO 50 K=KSTART,KSTOP J = J+1 50 SUM = SUM + A(L,K)*Z(J,I) C 80 S = S + ABS(SUM) C NORM(I) = SUMZ IF( SUMZ .EQ. 0.0E0 ) GO TO 120 C ..........THIS LOOP WILL NEVER BE COMPLETED SINCE THERE C WILL ALWAYS EXIST AN ELEMENT IN THE VECTOR Z(I) C LARGER THAN !!Z(I)!!/N.......... DO 90 L=1,N IF(ABS(Z(L,I)) .GE. NORM(I)/N) GO TO 100 90 CONTINUE C 100 TNORM = SIGN(NORM(I),Z(L,I)) C DO 110 L=1,N 110 Z(L,I) = Z(L,I)/TNORM C NORM(I) = S/(NORM(I)*NORMA) 120 RESDUL = AMAX1(NORM(I),RESDUL) C RETURN END SUBROUTINE RMATIN(NM,N,A) C C THIS INPUT SUBROUTINE READS A REAL TRIDIAGONAL MATRIX C FROM SYSIN OF ORDER N. C C THIS ROUTINE IS CATALOGUED AS EISPDRV4(RTREADI). C REAL A(NM,3) INTEGER IA(3) DATA IREADA/1/,IWRITE/6/ C READ(IREADA,5) N 5 FORMAT(I6) IF( N .EQ. 0 ) GO TO 70 DO 15 I = 1,N READ(IREADA,10) (IA(J),J=1,3) 10 FORMAT(3I12) DO 15 J = 1,3 15 A(I,J) = IA(J) RETURN 70 WRITE(IWRITE,80) 80 FORMAT(46H0END OF DATA FOR SUBROUTINE RMATIN(RTREADI). /1H1) STOP END