#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; static integer c__1 = 1; static integer c__4 = 4; static real c_b24 = 100.f; static real c_b25 = 1.f; static integer c__0 = 0; /* Subroutine */ int stimrq_(char *line, integer *nm, integer *mval, integer * nval, integer *nk, integer *kval, integer *nnb, integer *nbval, integer *nxval, integer *nlda, integer *ldaval, real *timmin, real *a, real *tau, real *b, real *work, real *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*3] = "SGERQF" "SORGRQ" "SORMRQ"; static char sides[1*2] = "L" "R"; static char transs[1*2] = "N" "T"; static integer iseed[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)"; static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS" " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)"; static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M <= N: " " \002,a6,\002 not timed\002)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4, i__5, i__6; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda; static char labm[1], side[1]; static integer info; static char path[3]; static real time; static integer isub, muse[12], nuse[12], i__, k, m, n; static char cname[6]; static integer iside, itoff, itran, minmn; extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int icopy_(integer *, integer *, integer *, integer *, integer *); static char trans[1]; static integer k1, i4, m1, n1; static real s1, s2; static integer ic; extern /* Subroutine */ int sprtb4_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen), sprtb5_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen); static integer nb, ik, im, lw, nx, reseed[4]; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), sgerqf_( integer *, integer *, real *, integer *, real *, real *, integer * , integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), xlaenv_(integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real *, integer *, integer *, integer *); static logical timsub[3]; extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer * , char *, real *, integer *, real *, integer *), sorgrq_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sormrq_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *); static integer lda, icl, inb, imx; static real ops; /* Fortran I/O blocks */ static cilist io___9 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___32 = { 0, 0, 0, 0, 0 }; static cilist io___33 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9994, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= STIMRQ times the LAPACK routines to perform the RQ factorization of a REAL general matrix. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M and N contained in the vectors MVAL and NVAL. The matrix sizes are used in pairs (M,N). MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NVAL (input) INTEGER array, dimension (NM) The values of the matrix column dimension N. NK (input) INTEGER The number of values of K in the vector KVAL. KVAL (input) INTEGER array, dimension (NK) The values of the matrix dimension K, used in SORMRQ. NNB (input) INTEGER The number of values of NB and NX contained in the vectors NBVAL and NXVAL. The blocking parameters are used in pairs (NB,NX). NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NXVAL (input) INTEGER array, dimension (NNB) The values of the crossover point NX. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) REAL array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values of LDA and N. TAU (workspace) REAL array, dimension (min(M,N)) B (workspace) REAL array, dimension (LDAMAX*NMAX) WORK (workspace) REAL array, dimension (LDAMAX*NBMAX) where NBMAX is the maximum value of NB. RESLTS (workspace) REAL array, dimension (LDR1,LDR2,LDR3,2*NK) The timing results for each subroutine over the relevant values of (M,N), (NB,NX), and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(1,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. Internal Parameters =================== MODE INTEGER The matrix type. MODE = 3 is a geometric distribution of eigenvalues. See SLATMS for further details. COND REAL The condition number of the matrix. The singular values are set to values from DMAX to DMAX/COND. DMAX REAL The magnitude of the largest singular value. ===================================================================== Parameter adjustments */ --mval; --nval; --kval; --nbval; --nxval; --ldaval; --a; --tau; --b; --work; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "RQ", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L230; } /* Check that M <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___9.ciunit = *nout; s_wsfe(&io___9); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L230; } /* Do for each pair of values (M,N): */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = nval[im]; minmn = min(m,n); icopy_(&c__4, iseed, &c__1, reseed, &c__1); /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Computing MAX */ i__4 = 1, i__5 = m * max(1,nb); lw = max(i__4,i__5); /* Generate a test matrix of size M by N. */ icopy_(&c__4, reseed, &c__1, iseed, &c__1); slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, & c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, & work[1], &info); if (timsub[0]) { /* SGERQF: RQ factorization */ slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); ic = 0; s1 = second_(); L10: sgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, & info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); goto L10; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda); goto L20; } time = (time - untime) / (real) ic; ops = sopla_("SGERQF", &m, &n, &c__0, &c__0, &nb); reslts_ref(inb, im, ilda, 1) = smflop_(&ops, &time, &info) ; } else { /* If SGERQF was not timed, generate a matrix and factor it using SGERQF anyway so that the factored form of the matrix can be used in timing the other routines. */ slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); sgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, & info); } if (timsub[1]) { /* SORGRQ: Generate orthogonal matrix Q from the RQ factorization */ slacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda); ic = 0; s1 = second_(); L30: sorgrq_(&minmn, &n, &minmn, &b[1], &lda, &tau[1], &work[1] , &lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda); goto L30; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L40: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda); goto L40; } time = (time - untime) / (real) ic; ops = sopla_("SORGRQ", &minmn, &n, &minmn, &c__0, &nb); reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &info) ; } /* L50: */ } /* L60: */ } /* L70: */ } /* Print tables of results */ for (isub = 1; isub <= 2; ++isub) { if (! timsub[isub - 1]) { goto L90; } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L80: */ } } io___32.ciunit = *nout; s_wsle(&io___32); e_wsle(); if (isub == 2) { io___33.ciunit = *nout; s_wsfe(&io___33); e_wsfe(); } sprtb4_("( NB, NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[ 1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, nout, (ftnlen)11, (ftnlen)1, (ftnlen)1); L90: ; } /* Time SORMRQ separately. Here the starting matrix is M by N, and K is the free dimension of the matrix multiplied by Q. */ if (timsub[2]) { /* Check that K <= LDA for the input values. */ atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6); e_wsfe(); goto L230; } /* Use only the pairs (M,N) where M <= N. */ imx = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { if (mval[im] <= nval[im]) { ++imx; muse[imx - 1] = mval[im]; nuse[imx - 1] = nval[im]; } /* L100: */ } /* SORMRQ: Multiply by Q stored as a product of elementary transformations Do for each pair of values (M,N): */ i__1 = imx; for (im = 1; im <= i__1; ++im) { m = muse[im - 1]; n = nuse[im - 1]; /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Generate an M by N matrix and form its RQ decomposition. */ slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, & c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, & work[1], &info); /* Computing MAX */ i__3 = 1, i__4 = m * max(1,nb); lw = max(i__3,i__4); sgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info); /* Do first for SIDE = 'L', then for SIDE = 'R' */ i4 = 0; for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[iside - 1]; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Do for each value of K in KVAL */ i__4 = *nk; for (ik = 1; ik <= i__4; ++ik) { k = kval[ik]; /* Sort out which variable is which */ if (iside == 1) { k1 = m; m1 = n; n1 = k; /* Computing MAX */ i__5 = 1, i__6 = n1 * max(1,nb); lw = max(i__5,i__6); } else { k1 = m; n1 = n; m1 = k; /* Computing MAX */ i__5 = 1, i__6 = m1 * max(1,nb); lw = max(i__5,i__6); } /* Do first for TRANS = 'N', then for TRANS = 'T' */ itoff = 0; for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; stimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, & c__0); ic = 0; s1 = second_(); L110: sormrq_(side, trans, &m1, &n1, &k1, &a[1], & lda, &tau[1], &b[1], &lda, &work[1], & lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { stimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); goto L110; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L120: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { stimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); goto L120; } time = (time - untime) / (real) ic; i__5 = iside - 1; ops = sopla_("SORMRQ", &m1, &n1, &k1, &i__5, & nb); reslts_ref(inb, im, ilda, i4 + itoff + ik) = smflop_(&ops, &time, &info); itoff = *nk; /* L130: */ } /* L140: */ } /* L150: */ } i4 = *nk << 1; /* L160: */ } /* L170: */ } /* L180: */ } /* Print tables of results */ isub = 3; i4 = 1; if (imx >= 1) { for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[iside - 1]; if (iside == 1) { io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen) sizeof(integer)); e_wsfe(); /* L190: */ } } } for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; i__1 = *nk; for (ik = 1; ik <= i__1; ++ik) { if (iside == 1) { n = kval[ik]; io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; e_wsfe(); *(unsigned char *)labm = 'M'; } else { m = kval[ik]; io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, "M", (ftnlen)1); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; e_wsfe(); *(unsigned char *)labm = 'N'; } sprtb5_("NB", "K", labm, nnb, &nbval[1], &imx, muse, nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1); ++i4; /* L200: */ } /* L210: */ } /* L220: */ } } else { io___54.ciunit = *nout; s_wsfe(&io___54); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); } } L230: return 0; /* End of STIMRQ */ } /* stimrq_ */ #undef reslts_ref #undef subnam_ref