#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c__1 = 1; /* Subroutine */ int stimpb_(char *line, integer *nn, integer *nval, integer * nk, integer *kval, integer *nns, integer *nsval, integer *nnb, integer *nbval, integer *nlda, integer *ldaval, real *timmin, real *a, real *b, integer *iwork, real *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char uplos[1*2] = "U" "L"; static char subnam[6*2] = "SPBTRF" "SPBTRS"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9996[] = "(5x,a6,\002 with M =\002,i6,\002, UPLO = '\002" ",a1,\002'\002,/)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_cmp(char *, char *, ftnlen, ftnlen), s_wsle(cilist *), e_wsle( void); /* Local variables */ static integer ilda, info; static char path[3]; static real time; static integer isub, nrhs; static char uplo[1]; static integer i__, k, n; static char cname[6]; extern logical lsame_(char *, char *); extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); static integer iuplo, i3; static real s1, s2; static integer ic, nb, ik, in; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), xlaenv_( integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int spbtrf_(char *, integer *, integer *, real *, integer *, integer *); static logical timsub[2]; extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real *, integer *, integer *, integer *), sprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen), spbtrs_(char *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *); static integer lda, ldb, icl, inb, mat; static real ops; /* Fortran I/O blocks */ static cilist io___7 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___32 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___33 = { 0, 0, 0, 0, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9996, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= STIMPB times SPBTRF and -TRS. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix size N. NK (input) INTEGER The number of values of K contained in the vector KVAL. KVAL (input) INTEGER array, dimension (NK) The values of the band width K. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) REAL array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values permitted for LDA and N. B (workspace) REAL array, dimension (LDAMAX*NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) RESLTS (output) REAL array, dimension (LDR1,LDR2,LDR3,NSUBS) The timing results for each subroutine over the relevant values of N, K, NB, and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(4,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NK). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,2*NLDA). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --nval; --kval; --nsval; --nbval; --ldaval; --a; --b; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__2, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L140; } /* Check that K+1 <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__0, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___7.ciunit = *nout; s_wsfe(&io___7); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L140; } /* Do for each value of the matrix size N: */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (lsame_(uplo, "U")) { mat = 5; } else { mat = -5; } /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; i3 = (iuplo - 1) * *nlda + ilda; /* Do for each value of the band width K: */ i__3 = *nk; for (ik = 1; ik <= i__3; ++ik) { k = kval[ik]; /* Computing MAX Computing MIN */ i__6 = k, i__7 = n - 1; i__4 = 0, i__5 = min(i__6,i__7); k = max(i__4,i__5); /* Time SPBTRF */ if (timsub[0]) { /* Do for each value of NB in NBVAL. Only SPBTRF is timed in this loop since the other routines are independent of NB. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); stimmg_(&mat, &n, &n, &a[1], &lda, &k, &k); ic = 0; s1 = second_(); L10: spbtrf_(uplo, &n, &k, &a[1], &lda, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { stimmg_(&mat, &n, &n, &a[1], &lda, &k, &k); goto L10; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L20: stimmg_(&mat, &n, &n, &a[1], &lda, &k, &k); s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { goto L20; } time = (time - untime) / (real) ic; ops = sopla_("SPBTRF", &n, &n, &k, &k, &nb); reslts_ref(inb, ik, i3, 1) = smflop_(&ops, &time, &info); /* L30: */ } } else { ic = 0; stimmg_(&mat, &n, &n, &a[1], &lda, &k, &k); } /* Generate another matrix and factor it using SPBTRF so that the factored form can be used in timing the other routines. */ nb = 1; xlaenv_(&c__1, &nb); if (ic != 1) { spbtrf_(uplo, &n, &k, &a[1], &lda, &info); } /* Time SPBTRS */ if (timsub[1]) { i__4 = *nns; for (i__ = 1; i__ <= i__4; ++i__) { nrhs = nsval[i__]; ldb = n; stimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, & c__0); ic = 0; s1 = second_(); L40: spbtrs_(uplo, &n, &k, &nrhs, &a[1], &lda, &b[1], & ldb, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { stimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L40; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L50: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { stimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L50; } time = (time - untime) / (real) ic; ops = sopla_("SPBTRS", &n, &nrhs, &k, &k, &c__0); reslts_ref(i__, ik, i3, 2) = smflop_(&ops, &time, &info); /* L60: */ } } /* L70: */ } /* L80: */ } /* L90: */ } /* Print tables of results for each timed routine. */ for (isub = 1; isub <= 2; ++isub) { if (! timsub[isub - 1]) { goto L120; } /* Print header for routine names. */ if (in == 1 || s_cmp(cname, "SPB ", (ftnlen)6, (ftnlen)6) == 0) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__2 = *nlda; for (i__ = 1; i__ <= i__2; ++i__) { io___32.ciunit = *nout; s_wsfe(&io___32); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof( integer)); e_wsfe(); /* L100: */ } } } io___33.ciunit = *nout; s_wsle(&io___33); e_wsle(); for (iuplo = 1; iuplo <= 2; ++iuplo) { io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1); e_wsfe(); i3 = (iuplo - 1) * *nlda + 1; if (isub == 1) { sprtbl_("NB", "K", nnb, &nbval[1], nk, &kval[1], nlda, & reslts_ref(1, 1, i3, 1), ldr1, ldr2, nout, ( ftnlen)2, (ftnlen)1); } else if (isub == 2) { sprtbl_("NRHS", "K", nns, &nsval[1], nk, &kval[1], nlda, & reslts_ref(1, 1, i3, 2), ldr1, ldr2, nout, ( ftnlen)4, (ftnlen)1); } /* L110: */ } L120: ; } /* L130: */ } L140: return 0; /* End of STIMPB */ } /* stimpb_ */ #undef reslts_ref #undef subnam_ref