#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__4 = 4; static integer c__2 = 2; static integer c__1 = 1; static integer c__12 = 12; static integer c__0 = 0; /* Subroutine */ int stimgt_(char *line, integer *nm, integer *mval, integer * nns, integer *nsval, integer *nlda, integer *ldaval, real *timmin, real *a, real *b, integer *iwork, real *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*4] = "SGTTRF" "SGTTRS" "SGTSV " "SGTSL "; static char transs[1*2] = "N" "T"; /* Format strings */ static char fmt_9998[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9997[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9996[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9999[] = "(\002 SGTTRS with TRANS = '\002,a1,\002'\002,/)" ; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda, info; static char path[3]; static real time; static integer isub, nrhs, i__, m, n; static char cname[6]; static integer laval[1]; extern doublereal sopgb_(char *, integer *, integer *, integer *, integer *, integer *); static integer itran; static char trans[1]; extern /* Subroutine */ int sgtsl_(integer *, real *, real *, real *, real *, integer *); static real s1, s2; extern /* Subroutine */ int sgtsv_(integer *, integer *, real *, real *, real *, real *, integer *, integer *); static integer ic, im; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real *, integer *, integer *, integer *); static logical timsub[4]; extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen), sgttrf_(integer *, real *, real *, real *, real *, integer *, integer *), sgttrs_(char *, integer *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *); static integer ldb, icl; static real ops; /* Fortran I/O blocks */ static cilist io___8 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___25 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___27 = { 0, 0, 0, 0, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9999, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= STIMGT times SGTTRF, -TRS, -SV, and -SL. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix size M. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) REAL array, dimension (NMAX*4) where NMAX is the maximum value permitted for N. B (workspace) REAL array, dimension (LDAMAX*NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) RESLTS (output) REAL array, dimension (LDR1,LDR2,LDR3,NSUBS+1) The timing results for each subroutine over the relevant values of N. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= 1. LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --mval; --nsval; --ldaval; --a; --b; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L180; } /* Check that N <= LDA for the input values. */ for (isub = 2; isub <= 4; ++isub) { if (! timsub[isub - 1]) { goto L10; } s_copy(cname, subnam_ref(0, isub), (ftnlen)6, (ftnlen)6); atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___8.ciunit = *nout; s_wsfe(&io___8); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); timsub[isub - 1] = FALSE_; } L10: ; } /* Do for each value of M: */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = max(m,1); /* Time SGTTRF */ if (timsub[0]) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); ic = 0; s1 = second_(); L20: sgttrf_(&m, &a[1], &a[n], &a[n * 2], &a[n * 3 - 2], &iwork[1], & info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); goto L20; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L30: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); goto L30; } time = (time - untime) / (real) ic; ops = sopgb_("SGTTRF", &m, &m, &c__1, &c__1, &iwork[1]) ; reslts_ref(1, im, 1, 1) = smflop_(&ops, &time, &info); } else if (timsub[1]) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); } /* Generate another matrix and factor it using SGTTRF so that the factored form can be used in timing the other routines. */ if (ic != 1) { sgttrf_(&m, &a[1], &a[n], &a[n * 2], &a[n * 3 - 2], &iwork[1], & info); } /* Time SGTTRS */ if (timsub[1]) { for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1] ; i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { ldb = ldaval[ilda]; i__3 = *nns; for (i__ = 1; i__ <= i__3; ++i__) { nrhs = nsval[i__]; stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = second_(); L40: sgttrs_(trans, &m, &nrhs, &a[1], &a[n], &a[n * 2], &a[ n * 3 - 2], &iwork[1], &b[1], &ldb, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L40; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L50: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L50; } time = (time - untime) / (real) ic; ops = sopgb_("SGTTRS", &m, &nrhs, &c__0, &c__0, & iwork[1]); if (itran == 1) { reslts_ref(i__, im, ilda, 2) = smflop_(&ops, & time, &info); } else { reslts_ref(i__, im, ilda, 5) = smflop_(&ops, & time, &info); } /* L60: */ } /* L70: */ } /* L80: */ } } if (timsub[2]) { i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { ldb = ldaval[ilda]; i__3 = *nns; for (i__ = 1; i__ <= i__3; ++i__) { nrhs = nsval[i__]; i__4 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__4, &c__0, &c__0); stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = second_(); L90: sgtsv_(&m, &nrhs, &a[1], &a[n], &a[n * 2], &b[1], &ldb, & info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { i__4 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__4, &c__0, &c__0); stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L90; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L100: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { i__4 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__4, &c__0, &c__0); stimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L100; } time = (time - untime) / (real) ic; ops = sopgb_("SGTSV ", &m, &nrhs, &c__0, &c__0, &iwork[1]); reslts_ref(i__, im, ilda, 3) = smflop_(&ops, &time, &info) ; /* L110: */ } /* L120: */ } } if (timsub[3]) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); stimmg_(&c__0, &m, &c__1, &b[1], &n, &c__0, &c__0); ic = 0; s1 = second_(); L130: sgtsl_(&m, &a[1], &a[n], &a[n * 2], &b[1], &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); stimmg_(&c__0, &m, &c__1, &b[1], &ldb, &c__0, &c__0); goto L130; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L140: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { i__2 = n * 3; stimmg_(&c__12, &m, &m, &a[1], &i__2, &c__0, &c__0); stimmg_(&c__0, &m, &c__1, &b[1], &ldb, &c__0, &c__0); goto L140; } time = (time - untime) / (real) ic; ops = sopgb_("SGTSV ", &m, &c__1, &c__0, &c__0, &iwork[1]); reslts_ref(1, im, 1, 4) = smflop_(&ops, &time, &info); } /* L150: */ } /* Print a table of results for each timed routine. */ for (isub = 1; isub <= 4; ++isub) { if (! timsub[isub - 1]) { goto L170; } io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1 && (timsub[1] || timsub[2])) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L160: */ } } io___27.ciunit = *nout; s_wsle(&io___27); e_wsle(); if (isub == 1) { sprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts[ reslts_offset], ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1); } else if (isub == 2) { io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, "N", (ftnlen)1); e_wsfe(); sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 2), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, "T", (ftnlen)1); e_wsfe(); sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 5), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); } else if (isub == 3) { sprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 3), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); } else if (isub == 4) { sprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts_ref( 1, 1, 1, 4), ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1); } L170: ; } L180: return 0; /* End of STIMGT */ } /* stimgt_ */ #undef reslts_ref #undef subnam_ref