#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { real ops, itcnt; } latime_; #define latime_1 latime_ /* Table of constant values */ static integer c__9 = 9; static integer c__0 = 0; static integer c__2 = 2; static integer c__1 = 1; /* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d__, real *e, complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2; real r__1; /* Builtin functions */ double log(doublereal); integer pow_ii(integer *, integer *); /* Local variables */ static real temp; static integer curr, i__, j, k, iperm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); static integer indxq, iwrem; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); static integer iqptr; extern /* Subroutine */ int claed7_(integer *, integer *, integer *, integer *, integer *, integer *, real *, complex *, integer *, real *, integer *, real *, integer *, integer *, integer *, integer *, integer *, real *, complex *, real *, integer *, integer *); static integer tlvls, ll, iq; extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, integer *, real *, integer *, complex *, integer *, real *); static integer igivcl; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *); static integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, smlsiz; extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *); static integer lgn, msd2, smm1, spm1, spm2; #define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1 #define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)] #define qstore_subscr(a_1,a_2) (a_2)*qstore_dim1 + a_1 #define qstore_ref(a_1,a_2) qstore[qstore_subscr(a_1,a_2)] /* -- LAPACK routine (instrumented to count operations, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Common block to return operation count and iteration count ITCNT is unchanged, OPS is only incremented Purpose ======= Using the divide and conquer method, CLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix. Arguments ========= QSIZ (input) INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) REAL array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E (input/output) REAL array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q (input/output) COMPLEX array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK (workspace) INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK (workspace) REAL array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS (input) INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). ===================================================================== Warning: N could be as big as QSIZ! Test the input parameters. Parameter adjustments */ --d__; --e; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; qstore_dim1 = *ldqs; qstore_offset = 1 + qstore_dim1 * 1; qstore -= qstore_offset; --rwork; --iwork; /* Function Body */ *info = 0; /* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN INFO = -1 ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) $ THEN */ if (*qsiz < max(0,*n)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } else if (*ldqs < max(1,*n)) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("CLAED0", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0, ( ftnlen)6, (ftnlen)1); /* Determine the size and placement of the submatrices, and save in the leading elements of IWORK. */ iwork[1] = *n; subpbs = 1; tlvls = 0; L10: if (iwork[subpbs] > smlsiz) { for (j = subpbs; j >= 1; --j) { iwork[j * 2] = (iwork[j] + 1) / 2; iwork[(j << 1) - 1] = iwork[j] / 2; /* L20: */ } ++tlvls; subpbs <<= 1; goto L10; } i__1 = subpbs; for (j = 2; j <= i__1; ++j) { iwork[j] += iwork[j - 1]; /* L30: */ } /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 using rank-1 modifications (cuts). */ spm1 = subpbs - 1; latime_1.ops += spm1 << 1; i__1 = spm1; for (i__ = 1; i__ <= i__1; ++i__) { submat = iwork[i__] + 1; smm1 = submat - 1; d__[smm1] -= (r__1 = e[smm1], dabs(r__1)); d__[submat] -= (r__1 = e[smm1], dabs(r__1)); /* L40: */ } indxq = (*n << 2) + 3; /* Set up workspaces for eigenvalues only/accumulate new vectors routine */ latime_1.ops += 3; temp = log((real) (*n)) / log(2.f); lgn = (integer) temp; if (pow_ii(&c__2, &lgn) < *n) { ++lgn; } if (pow_ii(&c__2, &lgn) < *n) { ++lgn; } iprmpt = indxq + *n + 1; iperm = iprmpt + *n * lgn; iqptr = iperm + *n * lgn; igivpt = iqptr + *n + 2; igivcl = igivpt + *n * lgn; igivnm = 1; iq = igivnm + (*n << 1) * lgn; /* Computing 2nd power */ i__1 = *n; iwrem = iq + i__1 * i__1 + 1; /* Initialize pointers */ i__1 = subpbs; for (i__ = 0; i__ <= i__1; ++i__) { iwork[iprmpt + i__] = 1; iwork[igivpt + i__] = 1; /* L50: */ } iwork[iqptr] = 1; /* Solve each submatrix eigenproblem at the bottom of the divide and conquer tree. */ curr = 0; i__1 = spm1; for (i__ = 0; i__ <= i__1; ++i__) { if (i__ == 0) { submat = 1; matsiz = iwork[1]; } else { submat = iwork[i__] + 1; matsiz = iwork[i__ + 1] - iwork[i__]; } ll = iq - 1 + iwork[iqptr + curr]; ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, & rwork[1], info); latime_1.ops += (real) (*qsiz) * 4 * matsiz * matsiz; clacrm_(qsiz, &matsiz, &q_ref(1, submat), ldq, &rwork[ll], &matsiz, & qstore_ref(1, submat), ldqs, &rwork[iwrem]); /* Computing 2nd power */ i__2 = matsiz; iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2; ++curr; if (*info > 0) { *info = submat * (*n + 1) + submat + matsiz - 1; return 0; } k = 1; i__2 = iwork[i__ + 1]; for (j = submat; j <= i__2; ++j) { iwork[indxq + j] = k; ++k; /* L60: */ } /* L70: */ } /* Successively merge eigensystems of adjacent submatrices into eigensystem for the corresponding larger matrix. while ( SUBPBS > 1 ) */ curlvl = 1; L80: if (subpbs > 1) { spm2 = subpbs - 2; i__1 = spm2; for (i__ = 0; i__ <= i__1; i__ += 2) { if (i__ == 0) { submat = 1; matsiz = iwork[2]; msd2 = iwork[1]; curprb = 0; } else { submat = iwork[i__] + 1; matsiz = iwork[i__ + 2] - iwork[i__]; msd2 = matsiz / 2; ++curprb; } /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) into an eigensystem of size MATSIZ. CLAED7 handles the case when the eigenvectors of a full or band Hermitian matrix (which was reduced to tridiagonal form) are desired. I am free to use Q as a valuable working space until Loop 150. */ claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[ submat], &qstore_ref(1, submat), ldqs, &e[submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &iwork[iqptr], & iwork[iprmpt], &iwork[iperm], &iwork[igivpt], &iwork[ igivcl], &rwork[igivnm], &q_ref(1, submat), &rwork[iwrem], &iwork[subpbs + 1], info); if (*info > 0) { *info = submat * (*n + 1) + submat + matsiz - 1; return 0; } iwork[i__ / 2 + 1] = iwork[i__ + 2]; /* L90: */ } subpbs /= 2; ++curlvl; goto L80; } /* end while Re-merge the eigenvalues/vectors which were deflated at the final merge step. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { j = iwork[indxq + i__]; rwork[i__] = d__[j]; ccopy_(qsiz, &qstore_ref(1, j), &c__1, &q_ref(1, i__), &c__1); /* L100: */ } scopy_(n, &rwork[1], &c__1, &d__[1], &c__1); return 0; /* End of CLAED0 */ } /* claed0_ */ #undef qstore_ref #undef qstore_subscr #undef q_ref #undef q_subscr