#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static doublecomplex c_b21 = {0.,0.}; static integer c__1 = 1; static integer c__8 = 8; /* Subroutine */ int zchkge_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nns, integer *nsval, doublereal *thresh, logical *tsterr, integer * nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 M = \002,i5,\002, N =\002,i5,\002, NB " "=\002,i4,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N" "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g1" "2.5)"; static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer ioff, mode, imat, info; static char path[3], dist[1]; static integer irhs, nrhs; static char norm[1], type__[1]; static integer nrun, i__; extern /* Subroutine */ int alahd_(integer *, char *); static integer k, m, n, nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); static doublereal rcond; static integer nimat; extern /* Subroutine */ int zget01_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *), zget02_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); static doublereal anorm; static integer itran; extern /* Subroutine */ int zget03_(integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *), zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zget07_(char *, integer *, integer * , doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); static char trans[1]; static integer izero, nerrs; static doublereal dummy; static integer lwork; static logical zerot; static char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *); static integer nb, im, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, nt; static doublereal rcondc, rcondi; extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); static doublereal cndnum, anormi, rcondo; extern /* Subroutine */ int zgecon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); static doublereal ainvnm; static logical trfcon; static doublereal anormo; extern /* Subroutine */ int xlaenv_(integer *, integer *), zerrge_(char *, integer *), zgerfs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgetrf_(integer *, integer *, doublecomplex *, integer *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zgetri_( integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal result[8]; extern /* Subroutine */ int zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); static integer lda, inb; /* Fortran I/O blocks */ static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University December 7, 1999 Purpose ======= ZCHKGE tests ZGETRF, -TRI, -TRS, -RFS, and -CON. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NBVAL) The values of the blocksize NB. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays. A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AFAC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) AINV (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(3,NSMAX)) RWORK (workspace) DOUBLE PRECISION array, dimension (max(2*NMAX,2*NSMAX+NWORK)) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --mval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrge_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); /* Do for each value of M in MVAL */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; lda = max(1,m); /* Do for each value of N in NVAL */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; *(unsigned char *)xtype = 'N'; nimat = 11; if (m <= 0 || n <= 0) { nimat = 1; } i__3 = nimat; for (imat = 1; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } /* Skip types 5, 6, or 7 if the matrix size is too small. */ zerot = imat >= 5 && imat <= 7; if (zerot && n < imat - 4) { goto L100; } /* Set up parameters with ZLATB4 and generate a test matrix with ZLATMS. */ zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, & work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &m, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } /* For types 5-7, zero one or more columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 5) { izero = 1; } else if (imat == 6) { izero = min(m,n); } else { izero = min(m,n) / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 7) { i__4 = m; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L20: */ } } else { i__4 = n - izero + 1; zlaset_("Full", &m, &i__4, &c_b21, &c_b21, &a[ioff + 1], &lda); } } else { izero = 0; } /* These lines, if used in place of the calls in the DO 60 loop, cause the code to bomb on a Sun SPARCstation. ANORMO = ZLANGE( 'O', M, N, A, LDA, RWORK ) ANORMI = ZLANGE( 'I', M, N, A, LDA, RWORK ) Do for each blocksize in NBVAL */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the LU factorization of the matrix. */ zlacpy_("Full", &m, &n, &a[1], &lda, &afac[1], &lda); s_copy(srnamc_1.srnamt, "ZGETRF", (ftnlen)6, (ftnlen)6); zgetrf_(&m, &n, &afac[1], &lda, &iwork[1], &info); /* Check error code from ZGETRF. */ if (info != izero) { alaerh_(path, "ZGETRF", &info, &izero, " ", &m, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } trfcon = FALSE_; /* + TEST 1 Reconstruct matrix from factors and compute residual. */ zlacpy_("Full", &m, &n, &afac[1], &lda, &ainv[1], &lda); zget01_(&m, &n, &a[1], &lda, &ainv[1], &lda, &iwork[1], & rwork[1], result); nt = 1; /* + TEST 2 Form the inverse if the factorization was successful and compute the residual. */ if (m == n && info == 0) { zlacpy_("Full", &n, &n, &afac[1], &lda, &ainv[1], & lda); s_copy(srnamc_1.srnamt, "ZGETRI", (ftnlen)6, (ftnlen) 6); nrhs = nsval[1]; lwork = *nmax * max(3,nrhs); zgetri_(&n, &ainv[1], &lda, &iwork[1], &work[1], & lwork, &info); /* Check error code from ZGETRI. */ if (info != 0) { alaerh_(path, "ZGETRI", &info, &c__0, " ", &n, &n, &c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } /* Compute the residual for the matrix times its inverse. Also compute the 1-norm condition number of A. */ zget03_(&n, &a[1], &lda, &ainv[1], &lda, &work[1], & lda, &rwork[1], &rcondo, &result[1]); anormo = zlange_("O", &m, &n, &a[1], &lda, &rwork[1]); /* Compute the infinity-norm condition number of A. */ anormi = zlange_("I", &m, &n, &a[1], &lda, &rwork[1]); ainvnm = zlange_("I", &n, &n, &ainv[1], &lda, &rwork[ 1]); if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } nt = 2; } else { /* Do only the condition estimate if INFO > 0. */ trfcon = TRUE_; anormo = zlange_("O", &m, &n, &a[1], &lda, &rwork[1]); anormi = zlange_("I", &m, &n, &a[1], &lda, &rwork[1]); rcondo = 0.; rcondi = 0.; } /* Print information about the tests so far that did not pass the threshold. */ i__5 = nt; for (k = 1; k <= i__5; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; /* Skip the remaining tests if this is not the first block size or if M .ne. N. Skip the solve tests if the matrix is singular. */ if (inb > 1 || m != n) { goto L90; } if (trfcon) { goto L70; } i__5 = *nns; for (irhs = 1; irhs <= i__5; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* + TEST 3 Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, ( ftnlen)6); zlarhs_(path, xtype, " ", trans, &n, &n, &kl, &ku, &nrhs, &a[1], &lda, &xact[1], &lda, &b[1] , &lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZGETRS", (ftnlen)6, ( ftnlen)6); zgetrs_(trans, &n, &nrhs, &afac[1], &lda, &iwork[ 1], &x[1], &lda, &info); /* Check error code from ZGETRS. */ if (info != 0) { alaerh_(path, "ZGETRS", &info, &c__0, trans, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); zget02_(trans, &n, &n, &nrhs, &a[1], &lda, &x[1], &lda, &work[1], &lda, &rwork[1], &result[ 2]); /* + TEST 4 Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); /* + TESTS 5, 6, and 7 Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZGERFS", (ftnlen)6, ( ftnlen)6); zgerfs_(trans, &n, &nrhs, &a[1], &lda, &afac[1], & lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], & rwork[(nrhs << 1) + 1], &info); /* Check error code from ZGERFS. */ if (info != 0) { alaerh_(path, "ZGERFS", &info, &c__0, trans, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[4]); zget07_(trans, &n, &nrhs, &a[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[nrhs + 1], &result[5]); /* Print information about the tests that did not pass the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L40: */ } nrun += 5; /* L50: */ } /* L60: */ } /* + TEST 8 Get an estimate of RCOND = 1/CNDNUM. */ L70: for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { anorm = anormo; rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { anorm = anormi; rcondc = rcondi; *(unsigned char *)norm = 'I'; } s_copy(srnamc_1.srnamt, "ZGECON", (ftnlen)6, (ftnlen) 6); zgecon_(norm, &n, &afac[1], &lda, &anorm, &rcond, & work[1], &rwork[1], &info); /* Check error code from ZGECON. */ if (info != 0) { alaerh_(path, "ZGECON", &info, &c__0, norm, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } /* This line is needed on a Sun SPARCstation. */ dummy = rcond; result[7] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L80: */ } L90: ; } L100: ; } /* L110: */ } /* L120: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKGE */ } /* zchkge_ */