#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__0 = 0; static integer c__6 = 6; static real c_b32 = 1.f; static integer c__1 = 1; static real c_b42 = 0.f; static integer c__4 = 4; /* Subroutine */ int cchkhb_(integer *nsizes, integer *nn, integer *nwdths, integer *kk, integer *ntypes, logical *dotype, integer *iseed, real * thresh, integer *nounit, complex *a, integer *lda, real *sd, real *se, complex *u, integer *ldu, complex *work, integer *lwork, real *rwork, real *result, integer *info) { /* Initialized data */ static integer ktype[15] = { 1,2,4,4,4,4,4,5,5,5,5,5,8,8,8 }; static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 }; static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 }; /* Format strings */ static char fmt_9999[] = "(\002 CCHKHB: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9998[] = "(/1x,a3,\002 -- Complex Hermitian Banded Tridi" "agonal Reduction Routines\002)"; static char fmt_9997[] = "(\002 Matrix types (see SCHK23 for details):" " \002)"; static char fmt_9996[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 5=Diagonal: clustered ent" "ries.\002,/\002 2=Identity matrix. \002,\002" " 6=Diagonal: large, evenly spaced.\002,/\002 3=Diagonal: evenl" "y spaced entries. \002,\002 7=Diagonal: small, evenly spaced." "\002,/\002 4=Diagonal: geometr. spaced entries.\002)"; static char fmt_9995[] = "(\002 Dense \002,a,\002 Banded Matrices:\002," "/\002 8=Evenly spaced eigenvals. \002,\002 12=Small," " evenly spaced eigenvals.\002,/\002 9=Geometrically spaced eige" "nvals. \002,\002 13=Matrix with random O(1) entries.\002," "/\002 10=Clustered eigenvalues. \002,\002 14=Matrix" " with large random entries.\002,/\002 11=Large, evenly spaced ei" "genvals. \002,\002 15=Matrix with small random entries.\002)"; static char fmt_9994[] = "(/\002 Tests performed: (S is Tridiag, U " "is \002,a,\002,\002,/20x,a,\002 means \002,a,\002.\002,/\002 UPL" "O='U':\002,/\002 1= | A - U S U\002,a1,\002 | / ( |A| n ulp ) " " \002,\002 2= | I - U U\002,a1,\002 | / ( n ulp )\002,/\002 U" "PLO='L':\002,/\002 3= | A - U S U\002,a1,\002 | / ( |A| n ulp )" " \002,\002 4= | I - U U\002,a1,\002 | / ( n ulp )\002)"; static char fmt_9993[] = "(\002 N=\002,i5,\002, K=\002,i4,\002, seed=" "\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)" "=\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; real r__1; complex q__1; /* Builtin functions */ double sqrt(doublereal), c_abs(complex *); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); void r_cnjg(complex *, complex *); /* Local variables */ static real cond; static integer jcol, kmax, nmax; static real unfl, ovfl, temp1; static integer i__, j, k, n; static logical badnn; extern /* Subroutine */ int chbt21_(char *, integer *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, real *, real *); static integer imode, iinfo; static real aninv, anorm; static integer nmats, jsize, nerrs, itype, jtype, ntest, jc; static logical badnnb; static integer jr; extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *); static integer idumma[1]; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int xerbla_(char *, integer *), clatmr_( integer *, integer *, char *, integer *, char *, complex *, integer *, real *, complex *, char *, char *, complex *, integer * , real *, complex *, integer *, real *, char *, integer *, integer *, integer *, real *, real *, char *, complex *, integer * , integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *); static integer jwidth; extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer *); static real rtunfl, rtovfl, ulpinv; static integer mtypes, ntestt; static real ulp; /* Fortran I/O blocks */ static cilist io___36 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___37 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9993, 0 }; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CCHKHB tests the reduction of a Hermitian band matrix to tridiagonal from, used with the Hermitian eigenvalue problem. CHBTRD factors a Hermitian band matrix A as U S U* , where * means conjugate transpose, S is symmetric tridiagonal, and U is unitary. CHBTRD can use either just the lower or just the upper triangle of A; CCHKHB checks both cases. When CCHKHB is called, a number of matrix "sizes" ("n's"), a number of bandwidths ("k's"), and a number of matrix "types" are specified. For each size ("n"), each bandwidth ("k") less than or equal to "n", and each type of matrix, one matrix will be generated and used to test the hermitian banded reduction routine. For each matrix, a number of tests will be performed: (1) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with UPLO='U' (2) | I - UU* | / ( n ulp ) (3) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with UPLO='L' (4) | I - UU* | / ( n ulp ) The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A diagonal matrix with evenly spaced entries 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (4) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random signs. (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random signs. (6) Same as (4), but multiplied by SQRT( overflow threshold ) (7) Same as (4), but multiplied by SQRT( underflow threshold ) (8) A matrix of the form U* D U, where U is unitary and D has evenly spaced entries 1, ..., ULP with random signs on the diagonal. (9) A matrix of the form U* D U, where U is unitary and D has geometrically spaced entries 1, ..., ULP with random signs on the diagonal. (10) A matrix of the form U* D U, where U is unitary and D has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal. (11) Same as (8), but multiplied by SQRT( overflow threshold ) (12) Same as (8), but multiplied by SQRT( underflow threshold ) (13) Hermitian matrix with random entries chosen from (-1,1). (14) Same as (13), but multiplied by SQRT( overflow threshold ) (15) Same as (13), but multiplied by SQRT( underflow threshold ) Arguments ========= NSIZES (input) INTEGER The number of sizes of matrices to use. If it is zero, CCHKHB does nothing. It must be at least zero. NN (input) INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. NWDTHS (input) INTEGER The number of bandwidths to use. If it is zero, CCHKHB does nothing. It must be at least zero. KK (input) INTEGER array, dimension (NWDTHS) An array containing the bandwidths to be used for the band matrices. The values must be at least zero. NTYPES (input) INTEGER The number of elements in DOTYPE. If it is zero, CCHKHB does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . DOTYPE (input) LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. ISEED (input/output) INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to CCHKHB to continue the same random number sequence. THRESH (input) REAL A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. NOUNIT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) A (input/workspace) REAL array, dimension (LDA, max(NN)) Used to hold the matrix whose eigenvalues are to be computed. LDA (input) INTEGER The leading dimension of A. It must be at least 2 (not 1!) and at least max( KK )+1. SD (workspace) REAL array, dimension (max(NN)) Used to hold the diagonal of the tridiagonal matrix computed by CHBTRD. SE (workspace) REAL array, dimension (max(NN)) Used to hold the off-diagonal of the tridiagonal matrix computed by CHBTRD. U (workspace) REAL array, dimension (LDU, max(NN)) Used to hold the unitary matrix computed by CHBTRD. LDU (input) INTEGER The leading dimension of U. It must be at least 1 and at least max( NN ). WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The number of entries in WORK. This must be at least max( LDA+1, max(NN)+1 )*max(NN). RESULT (output) REAL array, dimension (4) The values computed by the tests described above. The values are currently limited to 1/ulp, to avoid overflow. INFO (output) INTEGER If 0, then everything ran OK. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NTEST The number of tests performed, or which can be performed so far, for the current matrix. NTESTT The total number of tests performed so far. NMAX Largest value in NN. NMATS The number of matrices generated so far. NERRS The number of tests which have exceeded THRESH so far. COND, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTOVFL, RTUNFL Square roots of the previous 2 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) ===================================================================== Parameter adjustments */ --nn; --kk; --dotype; --iseed; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --sd; --se; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --work; --rwork; --result; /* Function Body Check for errors */ ntestt = 0; *info = 0; /* Important constants */ badnn = FALSE_; nmax = 1; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } badnnb = FALSE_; kmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = kmax, i__3 = kk[j]; kmax = max(i__2,i__3); if (kk[j] < 0) { badnnb = TRUE_; } /* L20: */ } /* Computing MIN */ i__1 = nmax - 1; kmax = min(i__1,kmax); /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*nwdths < 0) { *info = -3; } else if (badnnb) { *info = -4; } else if (*ntypes < 0) { *info = -5; } else if (*lda < kmax + 1) { *info = -11; } else if (*ldu < nmax) { *info = -15; } else if ((max(*lda,nmax) + 1) * nmax > *lwork) { *info = -17; } if (*info != 0) { i__1 = -(*info); xerbla_("CCHKHB", &i__1); return 0; } /* Quick return if possible */ if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) { return 0; } /* More Important constants */ unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; ulp = slamch_("Epsilon") * slamch_("Base"); ulpinv = 1.f / ulp; rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); /* Loop over sizes, types */ nerrs = 0; nmats = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; aninv = 1.f / (real) max(1,n); i__2 = *nwdths; for (jwidth = 1; jwidth <= i__2; ++jwidth) { k = kk[jwidth]; if (k > n) { goto L180; } /* Computing MAX Computing MIN */ i__5 = n - 1; i__3 = 0, i__4 = min(i__5,k); k = max(i__3,i__4); if (*nsizes != 1) { mtypes = min(15,*ntypes); } else { mtypes = min(16,*ntypes); } i__3 = mtypes; for (jtype = 1; jtype <= i__3; ++jtype) { if (! dotype[jtype]) { goto L170; } ++nmats; ntest = 0; for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L30: */ } /* Compute "A". Store as "Upper"; later, we will copy to other format. Control parameters: KMAGN KMODE KTYPE =1 O(1) clustered 1 zero =2 large clustered 2 identity =3 small exponential (none) =4 arithmetic diagonal, (w/ eigenvalues) =5 random log hermitian, w/ eigenvalues =6 random (none) =7 random diagonal =8 random hermitian =9 positive definite =10 diagonally dominant tridiagonal */ if (mtypes > 15) { goto L100; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.f; goto L70; L50: anorm = rtovfl * ulp * aninv; goto L70; L60: anorm = rtunfl * n * ulpinv; goto L70; L70: claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; if (jtype <= 15) { cond = ulpinv; } else { cond = ulpinv * aninv / 10.f; } /* Special Matrices -- Identity & Jordan block Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__4 = n; for (jcol = 1; jcol <= i__4; ++jcol) { i__5 = a_subscr(k + 1, jcol); a[i__5].r = anorm, a[i__5].i = 0.f; /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, & cond, &anorm, &c__0, &c__0, "Q", &a_ref(k + 1, 1), lda, &work[1], &iinfo); } else if (itype == 5) { /* Hermitian, eigenvalues specified */ clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, & cond, &anorm, &k, &k, "Q", &a[a_offset], lda, & work[1], &iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ clatmr_(&n, &n, "S", &iseed[1], "H", &work[1], &c__6, & c_b32, &c_b2, "T", "N", &work[n + 1], &c__1, & c_b32, &work[(n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &c__0, &c_b42, &anorm, "Q", &a_ref( k + 1, 1), lda, idumma, &iinfo); } else if (itype == 8) { /* Hermitian, random eigenvalues */ clatmr_(&n, &n, "S", &iseed[1], "H", &work[1], &c__6, & c_b32, &c_b2, "T", "N", &work[n + 1], &c__1, & c_b32, &work[(n << 1) + 1], &c__1, &c_b32, "N", idumma, &k, &k, &c_b42, &anorm, "Q", &a[a_offset], lda, idumma, &iinfo); } else if (itype == 9) { /* Positive definite, eigenvalues specified. */ clatms_(&n, &n, "S", &iseed[1], "P", &rwork[1], &imode, & cond, &anorm, &k, &k, "Q", &a[a_offset], lda, & work[n + 1], &iinfo); } else if (itype == 10) { /* Positive definite tridiagonal, eigenvalues specified. */ if (n > 1) { k = max(1,k); } clatms_(&n, &n, "S", &iseed[1], "P", &rwork[1], &imode, & cond, &anorm, &c__1, &c__1, "Q", &a_ref(k, 1), lda, &work[1], &iinfo); i__4 = n; for (i__ = 2; i__ <= i__4; ++i__) { i__5 = a_subscr(k + 1, i__ - 1); i__6 = a_subscr(k + 1, i__); q__1.r = a[i__5].r * a[i__6].r - a[i__5].i * a[i__6] .i, q__1.i = a[i__5].r * a[i__6].i + a[i__5] .i * a[i__6].r; temp1 = c_abs(&a_ref(k, i__)) / sqrt(c_abs(&q__1)); if (temp1 > .5f) { i__5 = a_subscr(k, i__); i__6 = a_subscr(k + 1, i__ - 1); i__7 = a_subscr(k + 1, i__); q__1.r = a[i__6].r * a[i__7].r - a[i__6].i * a[ i__7].i, q__1.i = a[i__6].r * a[i__7].i + a[i__6].i * a[i__7].r; r__1 = sqrt(c_abs(&q__1)) * .5f; a[i__5].r = r__1, a[i__5].i = 0.f; } /* L90: */ } } else { iinfo = 1; } if (iinfo != 0) { io___36.ciunit = *nounit; s_wsfe(&io___36); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } L100: /* Call CHBTRD to compute S and U from upper triangle. */ i__4 = k + 1; clacpy_(" ", &i__4, &n, &a[a_offset], lda, &work[1], lda); ntest = 1; chbtrd_("V", "U", &n, &k, &work[1], lda, &sd[1], &se[1], &u[ u_offset], ldu, &work[*lda * n + 1], &iinfo); if (iinfo != 0) { io___37.ciunit = *nounit; s_wsfe(&io___37); do_fio(&c__1, "CHBTRD(U)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[1] = ulpinv; goto L150; } } /* Do tests 1 and 2 */ chbt21_("Upper", &n, &k, &c__1, &a[a_offset], lda, &sd[1], & se[1], &u[u_offset], ldu, &work[1], &rwork[1], & result[1]); /* Convert A from Upper-Triangle-Only storage to Lower-Triangle-Only storage. */ i__4 = n; for (jc = 1; jc <= i__4; ++jc) { /* Computing MIN */ i__6 = k, i__7 = n - jc; i__5 = min(i__6,i__7); for (jr = 0; jr <= i__5; ++jr) { i__6 = a_subscr(jr + 1, jc); r_cnjg(&q__1, &a_ref(k + 1 - jr, jc + jr)); a[i__6].r = q__1.r, a[i__6].i = q__1.i; /* L110: */ } /* L120: */ } i__4 = n; for (jc = n + 1 - k; jc <= i__4; ++jc) { /* Computing MIN */ i__5 = k, i__6 = n - jc; i__7 = k; for (jr = min(i__5,i__6) + 1; jr <= i__7; ++jr) { i__5 = a_subscr(jr + 1, jc); a[i__5].r = 0.f, a[i__5].i = 0.f; /* L130: */ } /* L140: */ } /* Call CHBTRD to compute S and U from lower triangle */ i__4 = k + 1; clacpy_(" ", &i__4, &n, &a[a_offset], lda, &work[1], lda); ntest = 3; chbtrd_("V", "L", &n, &k, &work[1], lda, &sd[1], &se[1], &u[ u_offset], ldu, &work[*lda * n + 1], &iinfo); if (iinfo != 0) { io___40.ciunit = *nounit; s_wsfe(&io___40); do_fio(&c__1, "CHBTRD(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[3] = ulpinv; goto L150; } } ntest = 4; /* Do tests 3 and 4 */ chbt21_("Lower", &n, &k, &c__1, &a[a_offset], lda, &sd[1], & se[1], &u[u_offset], ldu, &work[1], &rwork[1], & result[3]); /* End of Loop -- Check for RESULT(j) > THRESH */ L150: ntestt += ntest; /* Print out tests which fail. */ i__4 = ntest; for (jr = 1; jr <= i__4; ++jr) { if (result[jr] >= *thresh) { /* If this is the first test to fail, print a header to the data file. */ if (nerrs == 0) { io___41.ciunit = *nounit; s_wsfe(&io___41); do_fio(&c__1, "CHB", (ftnlen)3); e_wsfe(); io___42.ciunit = *nounit; s_wsfe(&io___42); e_wsfe(); io___43.ciunit = *nounit; s_wsfe(&io___43); e_wsfe(); io___44.ciunit = *nounit; s_wsfe(&io___44); do_fio(&c__1, "Hermitian", (ftnlen)9); e_wsfe(); io___45.ciunit = *nounit; s_wsfe(&io___45); do_fio(&c__1, "unitary", (ftnlen)7); do_fio(&c__1, "*", (ftnlen)1); do_fio(&c__1, "conjugate transpose", (ftnlen)19); for (j = 1; j <= 4; ++j) { do_fio(&c__1, "*", (ftnlen)1); } e_wsfe(); } ++nerrs; io___46.ciunit = *nounit; s_wsfe(&io___46); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof( real)); e_wsfe(); } /* L160: */ } L170: ; } L180: ; } /* L190: */ } /* Summary */ slasum_("CHB", nounit, &nerrs, &ntestt); return 0; /* End of CCHKHB */ } /* cchkhb_ */ #undef a_ref #undef a_subscr