#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zheev_(char *jobz, char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZHEEV computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. LWORK >= max(1,2*N-1). For optimal efficiency, LWORK >= (NB+1)*N, where NB is the blocksize for ZHETRD returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2)) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__0 = 0; static doublereal c_b18 = 1.; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; doublecomplex z__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer inde; static doublereal anrm; static integer imax; static doublereal rmin, rmax; static integer lopt; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); static doublereal sigma; extern logical lsame_(char *, char *); static integer iinfo; static logical lower, wantz; static integer nb; extern doublereal dlamch_(char *); static integer iscale; static doublereal safmin; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *); static doublereal bignum; extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); static integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *); static integer indwrk; extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, integer *, integer *); static integer llwork; static doublereal smlnum; static integer lwkopt; static logical lquery; extern /* Subroutine */ int zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zungtr_(char *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); static doublereal eps; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --w; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); lquery = *lwork == -1; *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = (*n << 1) - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -8; } } if (*info == 0) { nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = 1, i__2 = (nb + 1) * *n; lwkopt = max(i__1,i__2); work[1].r = (doublereal) lwkopt, work[1].i = 0.; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHEEV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1].r = 1., work[1].i = 0.; return 0; } if (*n == 1) { i__1 = a_subscr(1, 1); w[1] = a[i__1].r; work[1].r = 3., work[1].i = 0.; if (wantz) { i__1 = a_subscr(1, 1); a[i__1].r = 1., a[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, info); } /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ inde = 1; indtau = 1; indwrk = indtau + *n; llwork = *lwork - indwrk + 1; zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & work[indwrk], &llwork, &iinfo); i__1 = indwrk; z__1.r = *n + work[i__1].r, z__1.i = work[i__1].i; lopt = (integer) z__1.r; /* For eigenvalues only, call DSTERF. For eigenvectors, first call ZUNGTR to generate the unitary matrix, then call ZSTEQR. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { zungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], & llwork, &iinfo); indwrk = inde + *n; zsteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[ indwrk], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } /* Set WORK(1) to optimal complex workspace size. */ work[1].r = (doublereal) lwkopt, work[1].i = 0.; return 0; /* End of ZHEEV */ } /* zheev_ */ #undef a_ref #undef a_subscr