#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; static integer c__2 = 2; static integer c__1 = 1; static integer c__0 = 0; /* Subroutine */ int dtimge_(char *line, integer *nm, integer *mval, integer * nns, integer *nsval, integer *nnb, integer *nbval, integer *nlda, integer *ldaval, doublereal *timmin, doublereal *a, doublereal *b, doublereal *work, integer *iwork, doublereal *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*3] = "DGETRF" "DGETRS" "DGETRI"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda, info; static char path[3]; static doublereal time; static integer isub, nrhs, i__, m, n; static char cname[6]; extern doublereal dopla_(char *, integer *, integer *, integer *, integer *, integer *); static doublereal s1, s2; static integer ic, nb, im; extern doublereal dsecnd_(void); extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen), dgetrf_( integer *, integer *, doublereal *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dgetri_(integer *, doublereal * , integer *, integer *, doublereal *, integer *, integer *); extern doublereal dmflop_(doublereal *, doublereal *, integer *); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), dtimmg_( integer *, integer *, integer *, doublereal *, integer *, integer *, integer *), dprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, ftnlen, ftnlen), dgetrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), xlaenv_(integer *, integer *); static doublereal untime; static logical timsub[3]; static integer lda, ldb, icl, inb; static doublereal ops; /* Fortran I/O blocks */ static cilist io___6 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___25 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___27 = { 0, 0, 0, 0, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= DTIMGE times DGETRF, -TRS, and -TRI. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix size M. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) DOUBLE PRECISION The minimum time a subroutine will be timed. A (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values permitted for LDA and N. B (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX) WORK (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NBMAX) where NBMAX is the maximum value of the block size NB. IWORK (workspace) INTEGER array, dimension (NMAX) RESLTS (output) DOUBLE PRECISION array, dimension (LDR1,LDR2,LDR3,NSUBS) The timing results for each subroutine over the relevant values of N and NB. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(4,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --mval; --nsval; --nbval; --ldaval; --a; --b; --work; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L130; } /* Check that N <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___6.ciunit = *nout; s_wsfe(&io___6); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L130; } /* Do for each value of M: */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = m; /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Do for each value of NB in NBVAL. Only the blocked routines are timed in this loop since the other routines are independent of NB. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Time DGETRF */ if (timsub[0]) { dtimmg_(&c__1, &m, &n, &a[1], &lda, &c__0, &c__0); ic = 0; s1 = dsecnd_(); L10: dgetrf_(&m, &n, &a[1], &lda, &iwork[1], &info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { dtimmg_(&c__1, &m, &n, &a[1], &lda, &c__0, &c__0); goto L10; } /* Subtract the time used in DTIMMG. */ icl = 1; s1 = dsecnd_(); L20: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { dtimmg_(&c__1, &m, &n, &a[1], &lda, &c__0, &c__0); goto L20; } time = (time - untime) / (doublereal) ic; ops = dopla_("DGETRF", &m, &n, &c__0, &c__0, &nb); reslts_ref(inb, im, ilda, 1) = dmflop_(&ops, &time, &info) ; } else { ic = 0; dtimmg_(&c__1, &m, &n, &a[1], &lda, &c__0, &c__0); } /* Generate another matrix and factor it using DGETRF so that the factored form can be used in timing the other routines. */ if (ic != 1) { dgetrf_(&m, &n, &a[1], &lda, &iwork[1], &info); } /* Time DGETRI */ if (timsub[2]) { dlacpy_("Full", &m, &m, &a[1], &lda, &b[1], &lda); ic = 0; s1 = dsecnd_(); L30: i__4 = lda * nb; dgetri_(&m, &b[1], &lda, &iwork[1], &work[1], &i__4, & info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { dlacpy_("Full", &m, &m, &a[1], &lda, &b[1], &lda); goto L30; } /* Subtract the time used in DLACPY. */ icl = 1; s1 = dsecnd_(); L40: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { dlacpy_("Full", &m, &m, &a[1], &lda, &b[1], &lda); goto L40; } time = (time - untime) / (doublereal) ic; ops = dopla_("DGETRI", &m, &m, &c__0, &c__0, &nb); reslts_ref(inb, im, ilda, 3) = dmflop_(&ops, &time, &info) ; } /* L50: */ } /* Time DGETRS */ if (timsub[1]) { i__3 = *nns; for (i__ = 1; i__ <= i__3; ++i__) { nrhs = nsval[i__]; ldb = lda; dtimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = dsecnd_(); L60: dgetrs_("No transpose", &m, &nrhs, &a[1], &lda, &iwork[1], &b[1], &ldb, &info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { dtimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L60; } /* Subtract the time used in DTIMMG. */ icl = 1; s1 = dsecnd_(); L70: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { dtimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L70; } time = (time - untime) / (doublereal) ic; ops = dopla_("DGETRS", &m, &nrhs, &c__0, &c__0, &c__0); reslts_ref(i__, im, ilda, 2) = dmflop_(&ops, &time, &info) ; /* L80: */ } } /* L90: */ } /* L100: */ } /* Print a table of results for each timed routine. */ for (isub = 1; isub <= 3; ++isub) { if (! timsub[isub - 1]) { goto L120; } io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L110: */ } } io___27.ciunit = *nout; s_wsle(&io___27); e_wsle(); if (isub == 1) { dprtbl_("NB", "N", nnb, &nbval[1], nm, &mval[1], nlda, &reslts[ reslts_offset], ldr1, ldr2, nout, (ftnlen)2, (ftnlen)1); } else if (isub == 2) { dprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 2), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); } else if (isub == 3) { dprtbl_("NB", "N", nnb, &nbval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 3), ldr1, ldr2, nout, (ftnlen)2, ( ftnlen)1); } L120: ; } L130: return 0; /* End of DTIMGE */ } /* dtimge_ */ #undef reslts_ref #undef subnam_ref