#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; static integer c__4 = 4; static integer c__1 = 1; static integer c__0 = 0; /* Subroutine */ int ctimpp_(char *line, integer *nn, integer *nval, integer * nns, integer *nsval, integer *la, real *timmin, complex *a, complex * b, integer *iwork, real *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char uplos[1*2] = "U" "L"; static char subnam[6*3] = "CPPTRF" "CPPTRS" "CPPTRI"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002,/)"; static char fmt_9997[] = "(5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer info; static char path[3]; static real time; static integer isub, nrhs; static char uplo[1]; static integer i__, n; static char cname[6]; static integer laval[1]; extern logical lsame_(char *, char *); extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); static integer iuplo; static real s1, s2; static integer ic, in; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int ctimmg_(integer *, integer *, integer *, complex *, integer *, integer *, integer *), atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), cpptrf_(char *, integer *, complex *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int cpptri_(char *, integer *, complex *, integer *); static logical timsub[3]; extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen), cpptrs_(char *, integer *, integer *, complex *, complex *, integer *, integer *); static integer lda, ldb, icl, mat; static real ops; /* Fortran I/O blocks */ static cilist io___8 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___27 = { 0, 0, 0, fmt_9997, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= CTIMPP times CPPTRF, -TRS, and -TRI. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix size N. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. LA (input) INTEGER The size of the arrays A, B, and C. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) COMPLEX array, dimension (LA) B (workspace) COMPLEX array, dimension (LA) IWORK (workspace) INTEGER array, dimension (NMAX) where NMAX is the maximum value of N permitted. RESLTS (output) REAL array, dimension (LDR1,LDR2,LDR3,NSUBS) The timing results for each subroutine over the relevant values of N. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(4,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NN). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= 2. NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --nval; --nsval; --a; --b; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L120; } /* Check that N*(N+1)/2 <= LA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); laval[0] = *la; atimck_(&c__4, cname, nn, &nval[1], &c__1, laval, nout, &info, (ftnlen)6); if (info > 0) { io___8.ciunit = *nout; s_wsfe(&io___8); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L120; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (lsame_(uplo, "U")) { mat = 4; } else { mat = -4; } /* Do for each value of N in NVAL. */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = n * (n + 1) / 2; /* Time CPPTRF */ if (timsub[0]) { ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); ic = 0; s1 = second_(); L10: cpptrf_(uplo, &n, &a[1], &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); goto L10; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); goto L20; } time = (time - untime) / (real) ic; ops = sopla_("CPPTRF", &n, &n, &c__0, &c__0, &c__0) ; reslts_ref(1, in, iuplo, 1) = smflop_(&ops, &time, &info); } else { ic = 0; ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); } /* Generate another matrix and factor it using CPPTRF so that the factored form can be used in timing the other routines. */ if (ic != 1) { cpptrf_(uplo, &n, &a[1], &info); } /* Time CPPTRI */ if (timsub[2]) { ccopy_(&lda, &a[1], &c__1, &b[1], &c__1); ic = 0; s1 = second_(); L30: cpptri_(uplo, &n, &b[1], &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ccopy_(&lda, &a[1], &c__1, &b[1], &c__1); goto L30; } /* Subtract the time used in CLACPY. */ icl = 1; s1 = second_(); L40: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ccopy_(&lda, &a[1], &c__1, &b[1], &c__1); goto L40; } time = (time - untime) / (real) ic; ops = sopla_("CPPTRI", &n, &n, &c__0, &c__0, &c__0) ; reslts_ref(1, in, iuplo, 3) = smflop_(&ops, &time, &info); } /* Time CPPTRS */ if (timsub[1]) { i__2 = *nns; for (i__ = 1; i__ <= i__2; ++i__) { nrhs = nsval[i__]; ldb = n; if (ldb % 2 == 0) { ++ldb; } ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = second_(); L50: cpptrs_(uplo, &n, &nrhs, &a[1], &b[1], &ldb, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L50; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L60: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L60; } time = (time - untime) / (real) ic; ops = sopla_("CPPTRS", &n, &nrhs, &c__0, &c__0, &c__0); reslts_ref(i__, in, iuplo, 2) = smflop_(&ops, &time, & info); /* L70: */ } } /* L80: */ } /* L90: */ } /* Print tables of results for each timed routine. */ for (isub = 1; isub <= 3; ++isub) { if (! timsub[isub - 1]) { goto L110; } io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); for (iuplo = 1; iuplo <= 2; ++iuplo) { io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1); e_wsfe(); if (isub == 1) { sprtbl_(" ", "N", &c__1, laval, nn, &nval[1], &c__1, & reslts_ref(1, 1, iuplo, 1), ldr1, ldr2, nout, (ftnlen) 1, (ftnlen)1); } else if (isub == 2) { sprtbl_("NRHS", "N", nns, &nsval[1], nn, &nval[1], &c__1, & reslts_ref(1, 1, iuplo, 2), ldr1, ldr2, nout, (ftnlen) 4, (ftnlen)1); } else if (isub == 3) { sprtbl_(" ", "N", &c__1, laval, nn, &nval[1], &c__1, & reslts_ref(1, 1, iuplo, 3), ldr1, ldr2, nout, (ftnlen) 1, (ftnlen)1); } /* L100: */ } L110: ; } L120: return 0; /* End of CTIMPP */ } /* ctimpp_ */ #undef reslts_ref #undef subnam_ref