#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zsytri_(char *uplo, integer *n, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSYTRF. On exit, if INFO = 0, the (symmetric) inverse of the original matrix. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF. WORK (workspace) COMPLEX*16 array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ static doublecomplex temp, akkp1, d__; static integer k; static doublecomplex t; extern logical lsame_(char *, char *); static integer kstep; static logical upper; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zsymv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); static doublecomplex ak; static integer kp; extern /* Subroutine */ int xerbla_(char *, integer *); static doublecomplex akp1; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZSYTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (*info = *n; *info >= 1; --(*info)) { i__1 = a_subscr(*info, *info); if (ipiv[*info] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) { return 0; } /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { i__2 = a_subscr(*info, *info); if (ipiv[*info] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) { return 0; } /* L20: */ } } *info = 0; if (upper) { /* Compute inv(A) from the factorization A = U*D*U'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = 1; L30: /* If K > N, exit from loop. */ if (k > *n) { goto L40; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ i__1 = a_subscr(k, k); z_div(&z__1, &c_b1, &a_ref(k, k)); a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute column K of the inverse. */ if (k > 1) { i__1 = k - 1; zcopy_(&i__1, &a_ref(1, k), &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = 0.; zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1, &c_b2, &a_ref(1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = k - 1; zdotu_(&z__2, &i__3, &work[1], &c__1, &a_ref(1, k), &c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ i__1 = a_subscr(k, k + 1); t.r = a[i__1].r, t.i = a[i__1].i; z_div(&z__1, &a_ref(k, k), &t); ak.r = z__1.r, ak.i = z__1.i; z_div(&z__1, &a_ref(k + 1, k + 1), &t); akp1.r = z__1.r, akp1.i = z__1.i; z_div(&z__1, &a_ref(k, k + 1), &t); akkp1.r = z__1.r, akkp1.i = z__1.i; z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i + ak.i * akp1.r; z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.; z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i * z__2.r; d__.r = z__1.r, d__.i = z__1.i; i__1 = a_subscr(k, k); z_div(&z__1, &akp1, &d__); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k + 1, k + 1); z_div(&z__1, &ak, &d__); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k + 1); z__2.r = -akkp1.r, z__2.i = -akkp1.i; z_div(&z__1, &z__2, &d__); a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute columns K and K+1 of the inverse. */ if (k > 1) { i__1 = k - 1; zcopy_(&i__1, &a_ref(1, k), &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = 0.; zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1, &c_b2, &a_ref(1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = k - 1; zdotu_(&z__2, &i__3, &work[1], &c__1, &a_ref(1, k), &c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k + 1); i__2 = a_subscr(k, k + 1); i__3 = k - 1; zdotu_(&z__2, &i__3, &a_ref(1, k), &c__1, &a_ref(1, k + 1), & c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = k - 1; zcopy_(&i__1, &a_ref(1, k + 1), &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = 0.; zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1, &c_b2, &a_ref(1, k + 1), &c__1); i__1 = a_subscr(k + 1, k + 1); i__2 = a_subscr(k + 1, k + 1); i__3 = k - 1; zdotu_(&z__2, &i__3, &work[1], &c__1, &a_ref(1, k + 1), &c__1) ; z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 2; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the leading submatrix A(1:k+1,1:k+1) */ i__1 = kp - 1; zswap_(&i__1, &a_ref(1, k), &c__1, &a_ref(1, kp), &c__1); i__1 = k - kp - 1; zswap_(&i__1, &a_ref(kp + 1, k), &c__1, &a_ref(kp, kp + 1), lda); i__1 = a_subscr(k, k); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k); i__2 = a_subscr(kp, kp); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, kp); a[i__1].r = temp.r, a[i__1].i = temp.i; if (kstep == 2) { i__1 = a_subscr(k, k + 1); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k + 1); i__2 = a_subscr(kp, k + 1); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, k + 1); a[i__1].r = temp.r, a[i__1].i = temp.i; } } k += kstep; goto L30; L40: ; } else { /* Compute inv(A) from the factorization A = L*D*L'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = *n; L50: /* If K < 1, exit from loop. */ if (k < 1) { goto L60; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ i__1 = a_subscr(k, k); z_div(&z__1, &c_b1, &a_ref(k, k)); a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute column K of the inverse. */ if (k < *n) { i__1 = *n - k; zcopy_(&i__1, &a_ref(k + 1, k), &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = 0.; zsymv_(uplo, &i__1, &z__1, &a_ref(k + 1, k + 1), lda, &work[1] , &c__1, &c_b2, &a_ref(k + 1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = *n - k; zdotu_(&z__2, &i__3, &work[1], &c__1, &a_ref(k + 1, k), &c__1) ; z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ i__1 = a_subscr(k, k - 1); t.r = a[i__1].r, t.i = a[i__1].i; z_div(&z__1, &a_ref(k - 1, k - 1), &t); ak.r = z__1.r, ak.i = z__1.i; z_div(&z__1, &a_ref(k, k), &t); akp1.r = z__1.r, akp1.i = z__1.i; z_div(&z__1, &a_ref(k, k - 1), &t); akkp1.r = z__1.r, akkp1.i = z__1.i; z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i + ak.i * akp1.r; z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.; z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i * z__2.r; d__.r = z__1.r, d__.i = z__1.i; i__1 = a_subscr(k - 1, k - 1); z_div(&z__1, &akp1, &d__); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k); z_div(&z__1, &ak, &d__); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k - 1); z__2.r = -akkp1.r, z__2.i = -akkp1.i; z_div(&z__1, &z__2, &d__); a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute columns K-1 and K of the inverse. */ if (k < *n) { i__1 = *n - k; zcopy_(&i__1, &a_ref(k + 1, k), &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = 0.; zsymv_(uplo, &i__1, &z__1, &a_ref(k + 1, k + 1), lda, &work[1] , &c__1, &c_b2, &a_ref(k + 1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = *n - k; zdotu_(&z__2, &i__3, &work[1], &c__1, &a_ref(k + 1, k), &c__1) ; z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k - 1); i__2 = a_subscr(k, k - 1); i__3 = *n - k; zdotu_(&z__2, &i__3, &a_ref(k + 1, k), &c__1, &a_ref(k + 1, k - 1), &c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = *n - k; zcopy_(&i__1, &a_ref(k + 1, k - 1), &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = 0.; zsymv_(uplo, &i__1, &z__1, &a_ref(k + 1, k + 1), lda, &work[1] , &c__1, &c_b2, &a_ref(k + 1, k - 1), &c__1); i__1 = a_subscr(k - 1, k - 1); i__2 = a_subscr(k - 1, k - 1); i__3 = *n - k; zdotu_(&z__2, &i__3, &work[1], &c__1, &a_ref(k + 1, k - 1), & c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 2; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the trailing submatrix A(k-1:n,k-1:n) */ if (kp < *n) { i__1 = *n - kp; zswap_(&i__1, &a_ref(kp + 1, k), &c__1, &a_ref(kp + 1, kp), & c__1); } i__1 = kp - k - 1; zswap_(&i__1, &a_ref(k + 1, k), &c__1, &a_ref(kp, k + 1), lda); i__1 = a_subscr(k, k); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k); i__2 = a_subscr(kp, kp); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, kp); a[i__1].r = temp.r, a[i__1].i = temp.i; if (kstep == 2) { i__1 = a_subscr(k, k - 1); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k - 1); i__2 = a_subscr(kp, k - 1); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, k - 1); a[i__1].r = temp.r, a[i__1].i = temp.i; } } k -= kstep; goto L50; L60: ; } return 0; /* End of ZSYTRI */ } /* zsytri_ */ #undef a_ref #undef a_subscr