#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int csteqr_(char *compz, integer *n, real *d__, real *e, complex *z__, integer *ldz, real *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CSTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a full or band complex Hermitian matrix can also be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this matrix to tridiagonal form. Arguments ========= COMPZ (input) CHARACTER*1 = 'N': Compute eigenvalues only. = 'V': Compute eigenvalues and eigenvectors of the original Hermitian matrix. On entry, Z must contain the unitary matrix used to reduce the original matrix to tridiagonal form. = 'I': Compute eigenvalues and eigenvectors of the tridiagonal matrix. Z is initialized to the identity matrix. N (input) INTEGER The order of the matrix. N >= 0. D (input/output) REAL array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order. E (input/output) REAL array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Z (input/output) COMPLEX array, dimension (LDZ, N) On entry, if COMPZ = 'V', then Z contains the unitary matrix used in the reduction to tridiagonal form. On exit, if INFO = 0, then if COMPZ = 'V', Z contains the orthonormal eigenvectors of the original Hermitian matrix, and if COMPZ = 'I', Z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If COMPZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if eigenvectors are desired, then LDZ >= max(1,N). WORK (workspace) REAL array, dimension (max(1,2*N-2)) If COMPZ = 'N', then WORK is not referenced. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: the algorithm has failed to find all the eigenvalues in a total of 30*N iterations; if INFO = i, then i elements of E have not converged to zero; on exit, D and E contain the elements of a symmetric tridiagonal matrix which is unitarily similar to the original matrix. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__0 = 0; static integer c__1 = 1; static integer c__2 = 2; static real c_b41 = 1.f; /* System generated locals */ integer z_dim1, z_offset, i__1, i__2; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ static integer lend, jtot; extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *) ; static real b, c__, f, g; static integer i__, j, k, l, m; static real p, r__, s; extern logical lsame_(char *, char *); extern /* Subroutine */ int clasr_(char *, char *, char *, integer *, integer *, real *, real *, complex *, integer *); static real anorm; extern /* Subroutine */ int cswap_(integer *, complex *, integer *, complex *, integer *); static integer l1, lendm1, lendp1; extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real * , real *, real *); extern doublereal slapy2_(real *, real *); static integer ii, mm, iscale; extern doublereal slamch_(char *); extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); static real safmax; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); static integer lendsv; extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real * ); static real ssfmin; static integer nmaxit, icompz; static real ssfmax; extern doublereal slanst_(char *, integer *, real *, real *); extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *); static integer lm1, mm1, nm1; static real rt1, rt2, eps; static integer lsv; static real tst, eps2; #define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1 #define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)] --d__; --e; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; /* Function Body */ *info = 0; if (lsame_(compz, "N")) { icompz = 0; } else if (lsame_(compz, "V")) { icompz = 1; } else if (lsame_(compz, "I")) { icompz = 2; } else { icompz = -1; } if (icompz < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CSTEQR", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (icompz == 2) { i__1 = z___subscr(1, 1); z__[i__1].r = 1.f, z__[i__1].i = 0.f; } return 0; } /* Determine the unit roundoff and over/underflow thresholds. */ eps = slamch_("E"); /* Computing 2nd power */ r__1 = eps; eps2 = r__1 * r__1; safmin = slamch_("S"); safmax = 1.f / safmin; ssfmax = sqrt(safmax) / 3.f; ssfmin = sqrt(safmin) / eps2; /* Compute the eigenvalues and eigenvectors of the tridiagonal matrix. */ if (icompz == 2) { claset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz); } nmaxit = *n * 30; jtot = 0; /* Determine where the matrix splits and choose QL or QR iteration for each block, according to whether top or bottom diagonal element is smaller. */ l1 = 1; nm1 = *n - 1; L10: if (l1 > *n) { goto L160; } if (l1 > 1) { e[l1 - 1] = 0.f; } if (l1 <= nm1) { i__1 = nm1; for (m = l1; m <= i__1; ++m) { tst = (r__1 = e[m], dabs(r__1)); if (tst == 0.f) { goto L30; } if (tst <= sqrt((r__1 = d__[m], dabs(r__1))) * sqrt((r__2 = d__[m + 1], dabs(r__2))) * eps) { e[m] = 0.f; goto L30; } /* L20: */ } } m = *n; L30: l = l1; lsv = l; lend = m; lendsv = lend; l1 = m + 1; if (lend == l) { goto L10; } /* Scale submatrix in rows and columns L to LEND */ i__1 = lend - l + 1; anorm = slanst_("I", &i__1, &d__[l], &e[l]); iscale = 0; if (anorm == 0.f) { goto L10; } if (anorm > ssfmax) { iscale = 1; i__1 = lend - l + 1; slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, info); i__1 = lend - l; slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, info); } else if (anorm < ssfmin) { iscale = 2; i__1 = lend - l + 1; slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, info); i__1 = lend - l; slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, info); } /* Choose between QL and QR iteration */ if ((r__1 = d__[lend], dabs(r__1)) < (r__2 = d__[l], dabs(r__2))) { lend = lsv; l = lendsv; } if (lend > l) { /* QL Iteration Look for small subdiagonal element. */ L40: if (l != lend) { lendm1 = lend - 1; i__1 = lendm1; for (m = l; m <= i__1; ++m) { /* Computing 2nd power */ r__2 = (r__1 = e[m], dabs(r__1)); tst = r__2 * r__2; if (tst <= eps2 * (r__1 = d__[m], dabs(r__1)) * (r__2 = d__[m + 1], dabs(r__2)) + safmin) { goto L60; } /* L50: */ } } m = lend; L60: if (m < lend) { e[m] = 0.f; } p = d__[l]; if (m == l) { goto L80; } /* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 to compute its eigensystem. */ if (m == l + 1) { if (icompz > 0) { slaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s); work[l] = c__; work[*n - 1 + l] = s; clasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], & z___ref(1, l), ldz); } else { slae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2); } d__[l] = rt1; d__[l + 1] = rt2; e[l] = 0.f; l += 2; if (l <= lend) { goto L40; } goto L140; } if (jtot == nmaxit) { goto L140; } ++jtot; /* Form shift. */ g = (d__[l + 1] - p) / (e[l] * 2.f); r__ = slapy2_(&g, &c_b41); g = d__[m] - p + e[l] / (g + r_sign(&r__, &g)); s = 1.f; c__ = 1.f; p = 0.f; /* Inner loop */ mm1 = m - 1; i__1 = l; for (i__ = mm1; i__ >= i__1; --i__) { f = s * e[i__]; b = c__ * e[i__]; slartg_(&g, &f, &c__, &s, &r__); if (i__ != m - 1) { e[i__ + 1] = r__; } g = d__[i__ + 1] - p; r__ = (d__[i__] - g) * s + c__ * 2.f * b; p = s * r__; d__[i__ + 1] = g + p; g = c__ * r__ - b; /* If eigenvectors are desired, then save rotations. */ if (icompz > 0) { work[i__] = c__; work[*n - 1 + i__] = -s; } /* L70: */ } /* If eigenvectors are desired, then apply saved rotations. */ if (icompz > 0) { mm = m - l + 1; clasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], & z___ref(1, l), ldz); } d__[l] -= p; e[l] = g; goto L40; /* Eigenvalue found. */ L80: d__[l] = p; ++l; if (l <= lend) { goto L40; } goto L140; } else { /* QR Iteration Look for small superdiagonal element. */ L90: if (l != lend) { lendp1 = lend + 1; i__1 = lendp1; for (m = l; m >= i__1; --m) { /* Computing 2nd power */ r__2 = (r__1 = e[m - 1], dabs(r__1)); tst = r__2 * r__2; if (tst <= eps2 * (r__1 = d__[m], dabs(r__1)) * (r__2 = d__[m - 1], dabs(r__2)) + safmin) { goto L110; } /* L100: */ } } m = lend; L110: if (m > lend) { e[m - 1] = 0.f; } p = d__[l]; if (m == l) { goto L130; } /* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 to compute its eigensystem. */ if (m == l - 1) { if (icompz > 0) { slaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s) ; work[m] = c__; work[*n - 1 + m] = s; clasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], & z___ref(1, l - 1), ldz); } else { slae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2); } d__[l - 1] = rt1; d__[l] = rt2; e[l - 1] = 0.f; l += -2; if (l >= lend) { goto L90; } goto L140; } if (jtot == nmaxit) { goto L140; } ++jtot; /* Form shift. */ g = (d__[l - 1] - p) / (e[l - 1] * 2.f); r__ = slapy2_(&g, &c_b41); g = d__[m] - p + e[l - 1] / (g + r_sign(&r__, &g)); s = 1.f; c__ = 1.f; p = 0.f; /* Inner loop */ lm1 = l - 1; i__1 = lm1; for (i__ = m; i__ <= i__1; ++i__) { f = s * e[i__]; b = c__ * e[i__]; slartg_(&g, &f, &c__, &s, &r__); if (i__ != m) { e[i__ - 1] = r__; } g = d__[i__] - p; r__ = (d__[i__ + 1] - g) * s + c__ * 2.f * b; p = s * r__; d__[i__] = g + p; g = c__ * r__ - b; /* If eigenvectors are desired, then save rotations. */ if (icompz > 0) { work[i__] = c__; work[*n - 1 + i__] = s; } /* L120: */ } /* If eigenvectors are desired, then apply saved rotations. */ if (icompz > 0) { mm = l - m + 1; clasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], & z___ref(1, m), ldz); } d__[l] -= p; e[lm1] = g; goto L90; /* Eigenvalue found. */ L130: d__[l] = p; --l; if (l >= lend) { goto L90; } goto L140; } /* Undo scaling if necessary */ L140: if (iscale == 1) { i__1 = lendsv - lsv + 1; slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], n, info); i__1 = lendsv - lsv; slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, info); } else if (iscale == 2) { i__1 = lendsv - lsv + 1; slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], n, info); i__1 = lendsv - lsv; slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, info); } /* Check for no convergence to an eigenvalue after a total of N*MAXIT iterations. */ if (jtot == nmaxit) { i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { if (e[i__] != 0.f) { ++(*info); } /* L150: */ } return 0; } goto L10; /* Order eigenvalues and eigenvectors. */ L160: if (icompz == 0) { /* Use Quick Sort */ slasrt_("I", n, &d__[1], info); } else { /* Use Selection Sort to minimize swaps of eigenvectors */ i__1 = *n; for (ii = 2; ii <= i__1; ++ii) { i__ = ii - 1; k = i__; p = d__[i__]; i__2 = *n; for (j = ii; j <= i__2; ++j) { if (d__[j] < p) { k = j; p = d__[j]; } /* L170: */ } if (k != i__) { d__[k] = d__[i__]; d__[i__] = p; cswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, k), &c__1); } /* L180: */ } } return 0; /* End of CSTEQR */ } /* csteqr_ */ #undef z___ref #undef z___subscr