/* dlagge.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__3 = 3; static integer c__1 = 1; static doublereal c_b11 = 1.; static doublereal c_b13 = 0.; /* Subroutine */ int dlagge_(integer *m, integer *n, integer *kl, integer *ku, doublereal *d__, doublereal *a, integer *lda, integer *iseed, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Builtin functions */ double d_sign(doublereal *, doublereal *); /* Local variables */ integer i__, j; doublereal wa, wb, wn, tau; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlarnv_(integer *, integer *, integer *, doublereal *); /* -- LAPACK auxiliary test routine (version 3.1) */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAGGE generates a real general m by n matrix A, by pre- and post- */ /* multiplying a real diagonal matrix D with random orthogonal matrices: */ /* A = U*D*V. The lower and upper bandwidths may then be reduced to */ /* kl and ku by additional orthogonal transformations. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of nonzero subdiagonals within the band of A. */ /* 0 <= KL <= M-1. */ /* KU (input) INTEGER */ /* The number of nonzero superdiagonals within the band of A. */ /* 0 <= KU <= N-1. */ /* D (input) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The diagonal elements of the diagonal matrix D. */ /* A (output) DOUBLE PRECISION array, dimension (LDA,N) */ /* The generated m by n matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= M. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry, the seed of the random number generator; the array */ /* elements must be between 0 and 4095, and ISEED(4) must be */ /* odd. */ /* On exit, the seed is updated. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (M+N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ --d__; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --iseed; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kl < 0 || *kl > *m - 1) { *info = -3; } else if (*ku < 0 || *ku > *n - 1) { *info = -4; } else if (*lda < max(1,*m)) { *info = -7; } if (*info < 0) { i__1 = -(*info); xerbla_("DLAGGE", &i__1); return 0; } /* initialize A to diagonal matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = 0.; /* L10: */ } /* L20: */ } i__1 = min(*m,*n); for (i__ = 1; i__ <= i__1; ++i__) { a[i__ + i__ * a_dim1] = d__[i__]; /* L30: */ } /* pre- and post-multiply A by random orthogonal matrices */ for (i__ = min(*m,*n); i__ >= 1; --i__) { if (i__ < *m) { /* generate random reflection */ i__1 = *m - i__ + 1; dlarnv_(&c__3, &iseed[1], &i__1, &work[1]); i__1 = *m - i__ + 1; wn = dnrm2_(&i__1, &work[1], &c__1); wa = d_sign(&wn, &work[1]); if (wn == 0.) { tau = 0.; } else { wb = work[1] + wa; i__1 = *m - i__; d__1 = 1. / wb; dscal_(&i__1, &d__1, &work[2], &c__1); work[1] = 1.; tau = wb / wa; } /* multiply A(i:m,i:n) by random reflection from the left */ i__1 = *m - i__ + 1; i__2 = *n - i__ + 1; dgemv_("Transpose", &i__1, &i__2, &c_b11, &a[i__ + i__ * a_dim1], lda, &work[1], &c__1, &c_b13, &work[*m + 1], &c__1); i__1 = *m - i__ + 1; i__2 = *n - i__ + 1; d__1 = -tau; dger_(&i__1, &i__2, &d__1, &work[1], &c__1, &work[*m + 1], &c__1, &a[i__ + i__ * a_dim1], lda); } if (i__ < *n) { /* generate random reflection */ i__1 = *n - i__ + 1; dlarnv_(&c__3, &iseed[1], &i__1, &work[1]); i__1 = *n - i__ + 1; wn = dnrm2_(&i__1, &work[1], &c__1); wa = d_sign(&wn, &work[1]); if (wn == 0.) { tau = 0.; } else { wb = work[1] + wa; i__1 = *n - i__; d__1 = 1. / wb; dscal_(&i__1, &d__1, &work[2], &c__1); work[1] = 1.; tau = wb / wa; } /* multiply A(i:m,i:n) by random reflection from the right */ i__1 = *m - i__ + 1; i__2 = *n - i__ + 1; dgemv_("No transpose", &i__1, &i__2, &c_b11, &a[i__ + i__ * a_dim1], lda, &work[1], &c__1, &c_b13, &work[*n + 1], & c__1); i__1 = *m - i__ + 1; i__2 = *n - i__ + 1; d__1 = -tau; dger_(&i__1, &i__2, &d__1, &work[*n + 1], &c__1, &work[1], &c__1, &a[i__ + i__ * a_dim1], lda); } /* L40: */ } /* Reduce number of subdiagonals to KL and number of superdiagonals */ /* to KU */ /* Computing MAX */ i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku; i__1 = max(i__2,i__3); for (i__ = 1; i__ <= i__1; ++i__) { if (*kl <= *ku) { /* annihilate subdiagonal elements first (necessary if KL = 0) */ /* Computing MIN */ i__2 = *m - 1 - *kl; if (i__ <= min(i__2,*n)) { /* generate reflection to annihilate A(kl+i+1:m,i) */ i__2 = *m - *kl - i__ + 1; wn = dnrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1); wa = d_sign(&wn, &a[*kl + i__ + i__ * a_dim1]); if (wn == 0.) { tau = 0.; } else { wb = a[*kl + i__ + i__ * a_dim1] + wa; i__2 = *m - *kl - i__; d__1 = 1. / wb; dscal_(&i__2, &d__1, &a[*kl + i__ + 1 + i__ * a_dim1], & c__1); a[*kl + i__ + i__ * a_dim1] = 1.; tau = wb / wa; } /* apply reflection to A(kl+i:m,i+1:n) from the left */ i__2 = *m - *kl - i__ + 1; i__3 = *n - i__; dgemv_("Transpose", &i__2, &i__3, &c_b11, &a[*kl + i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ * a_dim1], & c__1, &c_b13, &work[1], &c__1); i__2 = *m - *kl - i__ + 1; i__3 = *n - i__; d__1 = -tau; dger_(&i__2, &i__3, &d__1, &a[*kl + i__ + i__ * a_dim1], & c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) * a_dim1], lda); a[*kl + i__ + i__ * a_dim1] = -wa; } /* Computing MIN */ i__2 = *n - 1 - *ku; if (i__ <= min(i__2,*m)) { /* generate reflection to annihilate A(i,ku+i+1:n) */ i__2 = *n - *ku - i__ + 1; wn = dnrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda); wa = d_sign(&wn, &a[i__ + (*ku + i__) * a_dim1]); if (wn == 0.) { tau = 0.; } else { wb = a[i__ + (*ku + i__) * a_dim1] + wa; i__2 = *n - *ku - i__; d__1 = 1. / wb; dscal_(&i__2, &d__1, &a[i__ + (*ku + i__ + 1) * a_dim1], lda); a[i__ + (*ku + i__) * a_dim1] = 1.; tau = wb / wa; } /* apply reflection to A(i+1:m,ku+i:n) from the right */ i__2 = *m - i__; i__3 = *n - *ku - i__ + 1; dgemv_("No transpose", &i__2, &i__3, &c_b11, &a[i__ + 1 + (* ku + i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1], lda, &c_b13, &work[1], &c__1); i__2 = *m - i__; i__3 = *n - *ku - i__ + 1; d__1 = -tau; dger_(&i__2, &i__3, &d__1, &work[1], &c__1, &a[i__ + (*ku + i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) * a_dim1], lda); a[i__ + (*ku + i__) * a_dim1] = -wa; } } else { /* annihilate superdiagonal elements first (necessary if */ /* KU = 0) */ /* Computing MIN */ i__2 = *n - 1 - *ku; if (i__ <= min(i__2,*m)) { /* generate reflection to annihilate A(i,ku+i+1:n) */ i__2 = *n - *ku - i__ + 1; wn = dnrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda); wa = d_sign(&wn, &a[i__ + (*ku + i__) * a_dim1]); if (wn == 0.) { tau = 0.; } else { wb = a[i__ + (*ku + i__) * a_dim1] + wa; i__2 = *n - *ku - i__; d__1 = 1. / wb; dscal_(&i__2, &d__1, &a[i__ + (*ku + i__ + 1) * a_dim1], lda); a[i__ + (*ku + i__) * a_dim1] = 1.; tau = wb / wa; } /* apply reflection to A(i+1:m,ku+i:n) from the right */ i__2 = *m - i__; i__3 = *n - *ku - i__ + 1; dgemv_("No transpose", &i__2, &i__3, &c_b11, &a[i__ + 1 + (* ku + i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1], lda, &c_b13, &work[1], &c__1); i__2 = *m - i__; i__3 = *n - *ku - i__ + 1; d__1 = -tau; dger_(&i__2, &i__3, &d__1, &work[1], &c__1, &a[i__ + (*ku + i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) * a_dim1], lda); a[i__ + (*ku + i__) * a_dim1] = -wa; } /* Computing MIN */ i__2 = *m - 1 - *kl; if (i__ <= min(i__2,*n)) { /* generate reflection to annihilate A(kl+i+1:m,i) */ i__2 = *m - *kl - i__ + 1; wn = dnrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1); wa = d_sign(&wn, &a[*kl + i__ + i__ * a_dim1]); if (wn == 0.) { tau = 0.; } else { wb = a[*kl + i__ + i__ * a_dim1] + wa; i__2 = *m - *kl - i__; d__1 = 1. / wb; dscal_(&i__2, &d__1, &a[*kl + i__ + 1 + i__ * a_dim1], & c__1); a[*kl + i__ + i__ * a_dim1] = 1.; tau = wb / wa; } /* apply reflection to A(kl+i:m,i+1:n) from the left */ i__2 = *m - *kl - i__ + 1; i__3 = *n - i__; dgemv_("Transpose", &i__2, &i__3, &c_b11, &a[*kl + i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ * a_dim1], & c__1, &c_b13, &work[1], &c__1); i__2 = *m - *kl - i__ + 1; i__3 = *n - i__; d__1 = -tau; dger_(&i__2, &i__3, &d__1, &a[*kl + i__ + i__ * a_dim1], & c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) * a_dim1], lda); a[*kl + i__ + i__ * a_dim1] = -wa; } } i__2 = *m; for (j = *kl + i__ + 1; j <= i__2; ++j) { a[j + i__ * a_dim1] = 0.; /* L50: */ } i__2 = *n; for (j = *ku + i__ + 1; j <= i__2; ++j) { a[i__ + j * a_dim1] = 0.; /* L60: */ } /* L70: */ } return 0; /* End of DLAGGE */ } /* dlagge_ */