/* ztzt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__7 = 7; static doublecomplex c_b5 = {0.,0.}; static doublecomplex c_b6 = {1.,0.}; doublereal ztzt02_(integer *m, integer *n, doublecomplex *af, integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork) { /* System generated locals */ integer af_dim1, af_offset, i__1, i__2, i__3; doublereal ret_val; doublecomplex z__1; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__; doublereal rwork[1]; extern doublereal dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatzm_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTZT02 returns */ /* || I - Q'*Q || / ( M * eps) */ /* where the matrix Q is defined by the Householder transformations */ /* generated by ZTZRQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix AF. */ /* N (input) INTEGER */ /* The number of columns of the matrix AF. */ /* AF (input) COMPLEX*16 array, dimension (LDA,N) */ /* The output of ZTZRQF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array AF. */ /* TAU (input) COMPLEX*16 array, dimension (M) */ /* Details of the Householder transformations as returned by */ /* ZTZRQF. */ /* WORK (workspace) COMPLEX*16 array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* length of WORK array. Must be >= N*N+N */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; --tau; --work; /* Function Body */ ret_val = 0.; if (*lwork < *n * *n + *n) { xerbla_("ZTZT02", &c__7); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } /* Q := I */ zlaset_("Full", n, n, &c_b5, &c_b6, &work[1], n); /* Q := P(1) * ... * P(m) * Q */ for (i__ = *m; i__ >= 1; --i__) { i__1 = *n - *m + 1; zlatzm_("Left", &i__1, n, &af[i__ + (*m + 1) * af_dim1], lda, &tau[ i__], &work[i__], &work[*m + 1], n, &work[*n * *n + 1]); /* L10: */ } /* Q := P(m)' * ... * P(1)' * Q */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n - *m + 1; d_cnjg(&z__1, &tau[i__]); zlatzm_("Left", &i__2, n, &af[i__ + (*m + 1) * af_dim1], lda, &z__1, & work[i__], &work[*m + 1], n, &work[*n * *n + 1]); /* L20: */ } /* Q := Q - I */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = (i__ - 1) * *n + i__; i__3 = (i__ - 1) * *n + i__; z__1.r = work[i__3].r - 1., z__1.i = work[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L30: */ } ret_val = zlange_("One-norm", n, n, &work[1], n, rwork) / ( dlamch_("Epsilon") * (doublereal) max(*m,*n)); return ret_val; /* End of ZTZT02 */ } /* ztzt02_ */