/* zqrt12.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__7 = 7; static integer c__1 = 1; static doublecomplex c_b6 = {0.,0.}; static integer c__0 = 0; static doublereal c_b33 = -1.; doublereal zqrt12_(integer *m, integer *n, doublecomplex *a, integer *lda, doublereal *s, doublecomplex *work, integer *lwork, doublereal *rwork) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublereal ret_val; /* Local variables */ integer i__, j, mn, iscl, info; doublereal anrm; extern doublereal dnrm2_(integer *, doublereal *, integer *), dasum_( integer *, doublereal *, integer *); extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); doublereal dummy[1]; extern /* Subroutine */ int zgebd2_(integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), dlabad_(doublereal * , doublereal *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *), dbdsqr_(char *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal bignum; extern /* Subroutine */ int zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); doublereal smlnum, nrmsvl; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZQRT12 computes the singular values `svlues' of the upper trapezoid */ /* of A(1:M,1:N) and returns the ratio */ /* || s - svlues||/(||svlues||*eps*max(M,N)) */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The M-by-N matrix A. Only the upper trapezoid is referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* S (input) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The singular values of the matrix A. */ /* WORK (workspace) COMPLEX*16 array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= M*N + 2*min(M,N) + */ /* max(M,N). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*min(M,N)) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --s; --work; --rwork; /* Function Body */ ret_val = 0.; /* Test that enough workspace is supplied */ if (*lwork < *m * *n + (min(*m,*n) << 1) + max(*m,*n)) { xerbla_("ZQRT12", &c__7); return ret_val; } /* Quick return if possible */ mn = min(*m,*n); if ((doublereal) mn <= 0.) { return ret_val; } nrmsvl = dnrm2_(&mn, &s[1], &c__1); /* Copy upper triangle of A into work */ zlaset_("Full", m, n, &c_b6, &c_b6, &work[1], m); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = (j - 1) * *m + i__; i__4 = i__ + j * a_dim1; work[i__3].r = a[i__4].r, work[i__3].i = a[i__4].i; /* L10: */ } /* L20: */ } /* Get machine parameters */ smlnum = dlamch_("S") / dlamch_("P"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); /* Scale work if max entry outside range [SMLNUM,BIGNUM] */ anrm = zlange_("M", m, n, &work[1], m, dummy); iscl = 0; if (anrm > 0. && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &work[1], m, &info); iscl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &work[1], m, &info); iscl = 1; } if (anrm != 0.) { /* Compute SVD of work */ zgebd2_(m, n, &work[1], m, &rwork[1], &rwork[mn + 1], &work[*m * *n + 1], &work[*m * *n + mn + 1], &work[*m * *n + (mn << 1) + 1], & info); dbdsqr_("Upper", &mn, &c__0, &c__0, &c__0, &rwork[1], &rwork[mn + 1], dummy, &mn, dummy, &c__1, dummy, &mn, &rwork[(mn << 1) + 1], & info); if (iscl == 1) { if (anrm > bignum) { dlascl_("G", &c__0, &c__0, &bignum, &anrm, &mn, &c__1, &rwork[ 1], &mn, &info); } if (anrm < smlnum) { dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &mn, &c__1, &rwork[ 1], &mn, &info); } } } else { i__1 = mn; for (i__ = 1; i__ <= i__1; ++i__) { rwork[i__] = 0.; /* L30: */ } } /* Compare s and singular values of work */ daxpy_(&mn, &c_b33, &s[1], &c__1, &rwork[1], &c__1); ret_val = dasum_(&mn, &rwork[1], &c__1) / (dlamch_("Epsilon") * (doublereal) max(*m,*n)); if (nrmsvl != 0.) { ret_val /= nrmsvl; } return ret_val; /* End of ZQRT12 */ } /* zqrt12_ */