/* zchkpb.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static doublecomplex c_b50 = {0.,0.}; static doublecomplex c_b51 = {1.,0.}; static integer c__7 = 7; /* Subroutine */ int zchkpb_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', N=\002,i5,\002, KD" "=\002,i5,\002, NB=\002,i4,\002, type \002,i2,\002, test \002,i2" ",\002, ratio= \002,g12.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', N=\002,i5,\002, KD" "=\002,i5,\002, NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i" "2,\002) = \002,g12.5)"; static char fmt_9997[] = "(\002 UPLO='\002,a1,\002', N=\002,i5,\002, KD" "=\002,i5,\002,\002,10x,\002 type \002,i2,\002, test(\002,i2,\002" ") = \002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, n, i1, i2, kd, nb, in, kl, iw, ku, lda, ikd, inb, nkd, ldab, ioff, mode, koff, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); integer kdval[4]; doublereal rcond; integer nimat; doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zpbt01_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *) , zpbt02_(char *, integer *, integer *, integer *, doublecomplex * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zpbt05_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); integer iuplo, izero, nerrs; logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; char packit[1]; extern doublereal zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); doublereal ainvnm; extern /* Subroutine */ int zpbcon_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), xlaenv_( integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zpbrfs_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer * , doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zpbtrf_(char *, integer *, integer *, doublecomplex *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[7]; extern /* Subroutine */ int zerrpo_(char *, integer *), zpbtrs_( char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___40 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKPB tests ZPBTRF, -TRS, -RFS, and -CON. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NBVAL) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AINV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrpo_(path, nout); } infoc_1.infot = 0; kdval[0] = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; /* Set limits on the number of loop iterations. */ /* Computing MAX */ i__2 = 1, i__3 = min(n,4); nkd = max(i__2,i__3); nimat = 8; if (n == 0) { nimat = 1; } kdval[1] = n + (n + 1) / 4; kdval[2] = (n * 3 - 1) / 4; kdval[3] = (n + 1) / 4; i__2 = nkd; for (ikd = 1; ikd <= i__2; ++ikd) { /* Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order */ /* makes it easier to skip redundant values for small values */ /* of N. */ kd = kdval[ikd - 1]; ldab = kd + 1; /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { koff = 1; if (iuplo == 1) { *(unsigned char *)uplo = 'U'; /* Computing MAX */ i__3 = 1, i__4 = kd + 2 - n; koff = max(i__3,i__4); *(unsigned char *)packit = 'Q'; } else { *(unsigned char *)uplo = 'L'; *(unsigned char *)packit = 'B'; } i__3 = nimat; for (imat = 1; imat <= i__3; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L60; } /* Skip types 2, 3, or 4 if the matrix size is too small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L60; } if (! zerot || ! dotype[1]) { /* Set up parameters with ZLATB4 and generate a test */ /* matrix with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen) 6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &anorm, &kd, &kd, packit, &a[koff], &ldab, &work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, & n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, nout); goto L60; } } else if (izero > 0) { /* Use the same matrix for types 3 and 4 as for type */ /* 2 by copying back the zeroed out column, */ iw = (lda << 1) + 1; if (iuplo == 1) { ioff = (izero - 1) * ldab + kd + 1; i__4 = izero - i1; zcopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + i1], &c__1); iw = iw + izero - i1; i__4 = i2 - izero + 1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5); } else { ioff = (i1 - 1) * ldab + 1; i__4 = izero - i1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zcopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - i1], &i__5); ioff = (izero - 1) * ldab + 1; iw = iw + izero - i1; i__4 = i2 - izero + 1; zcopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1); } } /* For types 2-4, zero one row and column of the matrix */ /* to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = n; } else { izero = n / 2 + 1; } /* Save the zeroed out row and column in WORK(*,3) */ iw = lda << 1; /* Computing MIN */ i__5 = (kd << 1) + 1; i__4 = min(i__5,n); for (i__ = 1; i__ <= i__4; ++i__) { i__5 = iw + i__; work[i__5].r = 0., work[i__5].i = 0.; /* L20: */ } ++iw; /* Computing MAX */ i__4 = izero - kd; i1 = max(i__4,1); /* Computing MIN */ i__4 = izero + kd; i2 = min(i__4,n); if (iuplo == 1) { ioff = (izero - 1) * ldab + kd + 1; i__4 = izero - i1; zswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[ iw], &c__1); iw = iw + izero - i1; i__4 = i2 - izero + 1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1); } else { ioff = (i1 - 1) * ldab + 1; i__4 = izero - i1; /* Computing MAX */ i__6 = ldab - 1; i__5 = max(i__6,1); zswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[ iw], &c__1); ioff = (izero - 1) * ldab + 1; iw = iw + izero - i1; i__4 = i2 - izero + 1; zswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1); } } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[kd + 1], &ldab, &c__0); } else { zlaipd_(&n, &a[1], &ldab, &c__0); } /* Do for each value of NB in NBVAL */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the L*L' or U'*U factorization of the band */ /* matrix. */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &a[1], &ldab, &afac[1], & ldab); s_copy(srnamc_1.srnamt, "ZPBTRF", (ftnlen)32, (ftnlen) 6); zpbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info); /* Check error code from ZPBTRF. */ if (info != izero) { alaerh_(path, "ZPBTRF", &info, &izero, uplo, &n, & n, &kd, &kd, &nb, &imat, &nfail, &nerrs, nout); goto L50; } /* Skip the tests if INFO is not 0. */ if (info != 0) { goto L50; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute */ /* residual. */ i__5 = kd + 1; zlacpy_("Full", &i__5, &n, &afac[1], &ldab, &ainv[1], &ldab); zpbt01_(uplo, &n, &kd, &a[1], &ldab, &ainv[1], &ldab, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* Only do other tests if this is the first blocksize. */ if (inb > 1) { goto L50; } /* Form the inverse of A so we can get a good estimate */ /* of RCONDC = 1/(norm(A) * norm(inv(A))). */ zlaset_("Full", &n, &n, &c_b50, &c_b51, &ainv[1], & lda); s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)32, (ftnlen) 6); zpbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &ainv[1], &lda, &info); /* Compute RCONDC = 1/(norm(A) * norm(inv(A))). */ anorm = zlanhb_("1", uplo, &n, &kd, &a[1], &ldab, & rwork[1]); ainvnm = zlange_("1", &n, &n, &ainv[1], &lda, &rwork[ 1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } i__5 = *nns; for (irhs = 1; irhs <= i__5; ++irhs) { nrhs = nsval[irhs]; /* + TEST 2 */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, ( ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, &nrhs, &a[1], &ldab, &xact[1], &lda, &b[1] , &lda, iseed, &info); zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZPBTRS", (ftnlen)32, ( ftnlen)6); zpbtrs_(uplo, &n, &kd, &nrhs, &afac[1], &ldab, &x[ 1], &lda, &info); /* Check error code from ZPBTRS. */ if (info != 0) { alaerh_(path, "ZPBTRS", &info, &c__0, uplo, & n, &n, &kd, &kd, &nrhs, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); zpbt02_(uplo, &n, &kd, &nrhs, &a[1], &ldab, &x[1], &lda, &work[1], &lda, &rwork[1], &result[ 1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZPBRFS", (ftnlen)32, ( ftnlen)6); zpbrfs_(uplo, &n, &kd, &nrhs, &a[1], &ldab, &afac[ 1], &ldab, &b[1], &lda, &x[1], &lda, & rwork[1], &rwork[nrhs + 1], &work[1], & rwork[(nrhs << 1) + 1], &info); /* Check error code from ZPBRFS. */ if (info != 0) { alaerh_(path, "ZPBRFS", &info, &c__0, uplo, & n, &n, &kd, &kd, &nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); zpbt05_(uplo, &n, &kd, &nrhs, &a[1], &ldab, &b[1], &lda, &x[1], &lda, &xact[1], &lda, & rwork[1], &rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not */ /* pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kd, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L30: */ } nrun += 5; /* L40: */ } /* + TEST 7 */ /* Get an estimate of RCOND = 1/CNDNUM. */ s_copy(srnamc_1.srnamt, "ZPBCON", (ftnlen)32, (ftnlen) 6); zpbcon_(uplo, &n, &kd, &afac[1], &ldab, &anorm, & rcond, &work[1], &rwork[1], &info); /* Check error code from ZPBCON. */ if (info != 0) { alaerh_(path, "ZPBCON", &info, &c__0, uplo, &n, & n, &kd, &kd, &c_n1, &imat, &nfail, &nerrs, nout); } result[6] = dget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___48.ciunit = *nout; s_wsfe(&io___48); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kd, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; L50: ; } L60: ; } /* L70: */ } /* L80: */ } /* L90: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKPB */ } /* zchkpb_ */