/* sspt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static real c_b5 = 0.f; static real c_b6 = 1.f; /* Subroutine */ int sspt01_(char *uplo, integer *n, real *a, real *afac, integer *ipiv, real *c__, integer *ldc, real *rwork, real *resid) { /* System generated locals */ integer c_dim1, c_offset, i__1, i__2; /* Local variables */ integer i__, j, jc; real eps; integer info; extern logical lsame_(char *, char *); real anorm; extern doublereal slamch_(char *); extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, real *, real *, integer *); extern doublereal slansp_(char *, char *, integer *, real *, real *); extern /* Subroutine */ int slavsp_(char *, char *, char *, integer *, integer *, real *, integer *, real *, integer *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSPT01 reconstructs a symmetric indefinite packed matrix A from its */ /* block L*D*L' or U*D*U' factorization and computes the residual */ /* norm( C - A ) / ( N * norm(A) * EPS ), */ /* where C is the reconstructed matrix and EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) REAL array, dimension (N*(N+1)/2) */ /* The original symmetric matrix A, stored as a packed */ /* triangular matrix. */ /* AFAC (input) REAL array, dimension (N*(N+1)/2) */ /* The factored form of the matrix A, stored as a packed */ /* triangular matrix. AFAC contains the block diagonal matrix D */ /* and the multipliers used to obtain the factor L or U from the */ /* block L*D*L' or U*D*U' factorization as computed by SSPTRF. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from SSPTRF. */ /* C (workspace) REAL array, dimension (LDC,N) */ /* LDC (integer) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,N). */ /* RWORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) */ /* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ --a; --afac; --ipiv; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --rwork; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } /* Determine EPS and the norm of A. */ eps = slamch_("Epsilon"); anorm = slansp_("1", uplo, n, &a[1], &rwork[1]); /* Initialize C to the identity matrix. */ slaset_("Full", n, n, &c_b5, &c_b6, &c__[c_offset], ldc); /* Call SLAVSP to form the product D * U' (or D * L' ). */ slavsp_(uplo, "Transpose", "Non-unit", n, n, &afac[1], &ipiv[1], &c__[ c_offset], ldc, &info); /* Call SLAVSP again to multiply by U ( or L ). */ slavsp_(uplo, "No transpose", "Unit", n, n, &afac[1], &ipiv[1], &c__[ c_offset], ldc, &info); /* Compute the difference C - A . */ if (lsame_(uplo, "U")) { jc = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] -= a[jc + i__]; /* L10: */ } jc += j; /* L20: */ } } else { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] -= a[jc + i__ - j]; /* L30: */ } jc = jc + *n - j + 1; /* L40: */ } } /* Compute norm( C - A ) / ( N * norm(A) * EPS ) */ *resid = slansy_("1", uplo, n, &c__[c_offset], ldc, &rwork[1]); if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { *resid = *resid / (real) (*n) / anorm / eps; } return 0; /* End of SSPT01 */ } /* sspt01_ */