/* sdrvrf4.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; /* Subroutine */ int sdrvrf4_(integer *nout, integer *nn, integer *nval, real *thresh, real *c1, real *c2, integer *ldc, real *crf, real *a, integer *lda, real *s_work_slange__) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char forms[1*2] = "N" "T"; static char transs[1*2] = "N" "T"; /* Format strings */ static char fmt_9999[] = "(1x,\002 *** Error(s) or Failure(s) while test" "ing SSFRK ***\002)"; static char fmt_9997[] = "(1x,\002 Failure in \002,a5,\002, CFORM=" "'\002,a1,\002',\002,\002 UPLO='\002,a1,\002',\002,\002 TRANS=" "'\002,a1,\002',\002,\002 N=\002,i3,\002, K =\002,i3,\002, test" "=\002,g12.5)"; static char fmt_9996[] = "(1x,\002All tests for \002,a5,\002 auxiliary r" "outine passed the \002,\002threshold (\002,i5,\002 tests run)" "\002)"; static char fmt_9995[] = "(1x,a6,\002 auxiliary routine:\002,i5,\002 out" " of \002,i5,\002 tests failed to pass the threshold\002)"; /* System generated locals */ integer a_dim1, a_offset, c1_dim1, c1_offset, c2_dim1, c2_offset, i__1, i__2, i__3, i__4; real r__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsle(cilist *), e_wsle(void), s_wsfe(cilist *), e_wsfe(void), do_fio(integer *, char *, ftnlen); /* Local variables */ integer i__, j, k, n, iik, iin; real eps, beta; integer info; char uplo[1]; integer nrun; real alpha; integer nfail, iseed[4]; char cform[1]; integer iform; real norma, normc; char trans[1]; integer iuplo; extern /* Subroutine */ int ssfrk_(char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, real *), ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); integer ialpha; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *), slarnd_(integer *, integer *); integer itrans; real result[1]; extern /* Subroutine */ int stfttr_(char *, char *, integer *, real *, real *, integer *, integer *), strttf_(char *, char *, integer *, real *, integer *, real *, integer *); /* Fortran I/O blocks */ static cilist io___28 = { 0, 0, 0, 0, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___32 = { 0, 0, 0, fmt_9995, 0 }; /* -- LAPACK test routine (version 3.2.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2008 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SDRVRF4 tests the LAPACK RFP routines: */ /* SSFRK */ /* Arguments */ /* ========= */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To */ /* have every test ratio printed, use THRESH = 0. */ /* C1 (workspace) REAL array, */ /* dimension (LDC,NMAX) */ /* C2 (workspace) REAL array, */ /* dimension (LDC,NMAX) */ /* LDC (input) INTEGER */ /* The leading dimension of the array A. */ /* LDA >= max(1,NMAX). */ /* CRF (workspace) REAL array, */ /* dimension ((NMAX*(NMAX+1))/2). */ /* A (workspace) REAL array, */ /* dimension (LDA,NMAX) */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,NMAX). */ /* S_WORK_SLANGE (workspace) REAL array, dimension (NMAX) */ /* ===================================================================== */ /* .. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --nval; c2_dim1 = *ldc; c2_offset = 1 + c2_dim1; c2 -= c2_offset; c1_dim1 = *ldc; c1_offset = 1 + c1_dim1; c1 -= c1_offset; --crf; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --s_work_slange__; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ nrun = 0; nfail = 0; info = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = slamch_("Precision"); i__1 = *nn; for (iin = 1; iin <= i__1; ++iin) { n = nval[iin]; i__2 = *nn; for (iik = 1; iik <= i__2; ++iik) { k = nval[iin]; for (iform = 1; iform <= 2; ++iform) { *(unsigned char *)cform = *(unsigned char *)&forms[iform - 1]; for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itrans = 1; itrans <= 2; ++itrans) { *(unsigned char *)trans = *(unsigned char *)&transs[ itrans - 1]; for (ialpha = 1; ialpha <= 4; ++ialpha) { if (ialpha == 1) { alpha = 0.f; beta = 0.f; } else if (ialpha == 2) { alpha = 1.f; beta = 0.f; } else if (ialpha == 3) { alpha = 0.f; beta = 1.f; } else { alpha = slarnd_(&c__2, iseed); beta = slarnd_(&c__2, iseed); } /* All the parameters are set: */ /* CFORM, UPLO, TRANS, M, N, */ /* ALPHA, and BETA */ /* READY TO TEST! */ ++nrun; if (itrans == 1) { /* In this case we are NOTRANS, so A is N-by-K */ i__3 = k; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = 1; i__ <= i__4; ++i__) { a[i__ + j * a_dim1] = slarnd_(&c__2, iseed); } } norma = slange_("I", &n, &k, &a[a_offset], lda, &s_work_slange__[1]); } else { /* In this case we are TRANS, so A is K-by-N */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = k; for (i__ = 1; i__ <= i__4; ++i__) { a[i__ + j * a_dim1] = slarnd_(&c__2, iseed); } } norma = slange_("I", &k, &n, &a[a_offset], lda, &s_work_slange__[1]); } /* Generate C1 our N--by--N symmetric matrix. */ /* Make sure C2 has the same upper/lower part, */ /* (the one that we do not touch), so */ /* copy the initial C1 in C2 in it. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = 1; i__ <= i__4; ++i__) { c1[i__ + j * c1_dim1] = slarnd_(&c__2, iseed); c2[i__ + j * c2_dim1] = c1[i__ + j * c1_dim1]; } } /* (See comment later on for why we use SLANGE and */ /* not SLANSY for C1.) */ normc = slange_("I", &n, &n, &c1[c1_offset], ldc, &s_work_slange__[1]); s_copy(srnamc_1.srnamt, "STRTTF", (ftnlen)32, ( ftnlen)6); strttf_(cform, uplo, &n, &c1[c1_offset], ldc, & crf[1], &info); /* call ssyrk the BLAS routine -> gives C1 */ s_copy(srnamc_1.srnamt, "SSYRK ", (ftnlen)32, ( ftnlen)6); ssyrk_(uplo, trans, &n, &k, &alpha, &a[a_offset], lda, &beta, &c1[c1_offset], ldc); /* call ssfrk the RFP routine -> gives CRF */ s_copy(srnamc_1.srnamt, "SSFRK ", (ftnlen)32, ( ftnlen)6); ssfrk_(cform, uplo, trans, &n, &k, &alpha, &a[ a_offset], lda, &beta, &crf[1]); /* convert CRF in full format -> gives C2 */ s_copy(srnamc_1.srnamt, "STFTTR", (ftnlen)32, ( ftnlen)6); stfttr_(cform, uplo, &n, &crf[1], &c2[c2_offset], ldc, &info); /* compare C1 and C2 */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = 1; i__ <= i__4; ++i__) { c1[i__ + j * c1_dim1] -= c2[i__ + j * c2_dim1]; } } /* Yes, C1 is symmetric so we could call SLANSY, */ /* but we want to check the upper part that is */ /* supposed to be unchanged and the diagonal that */ /* is supposed to be real -> SLANGE */ result[0] = slange_("I", &n, &n, &c1[c1_offset], ldc, &s_work_slange__[1]); /* Computing MAX */ r__1 = dabs(alpha) * norma + dabs(beta); result[0] = result[0] / dmax(r__1,1.f) / max(n,1) / eps; if (result[0] >= *thresh) { if (nfail == 0) { io___28.ciunit = *nout; s_wsle(&io___28); e_wsle(); io___29.ciunit = *nout; s_wsfe(&io___29); e_wsfe(); } io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, "SSFRK", (ftnlen)5); do_fio(&c__1, cform, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L100: */ } /* L110: */ } /* L120: */ } /* L130: */ } /* L140: */ } /* L150: */ } /* Print a summary of the results. */ if (nfail == 0) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, "SSFRK", (ftnlen)5); do_fio(&c__1, (char *)&nrun, (ftnlen)sizeof(integer)); e_wsfe(); } else { io___32.ciunit = *nout; s_wsfe(&io___32); do_fio(&c__1, "SSFRK", (ftnlen)5); do_fio(&c__1, (char *)&nfail, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrun, (ftnlen)sizeof(integer)); e_wsfe(); } return 0; /* End of SDRVRF4 */ } /* sdrvrf4_ */