/* dtbt03.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dtbt03_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal *scale, doublereal *cnorm, doublereal *tscal, doublereal *x, integer * ldx, doublereal *b, integer *ldb, doublereal *work, doublereal *resid) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2, d__3; /* Local variables */ integer j, ix; doublereal eps, err; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); doublereal xscal; extern /* Subroutine */ int dtbmv_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer * , doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); doublereal tnorm, xnorm; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); doublereal bignum, smlnum; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTBT03 computes the residual for the solution to a scaled triangular */ /* system of equations A*x = s*b or A'*x = s*b when A is a */ /* triangular band matrix. Here A' is the transpose of A, s is a scalar, */ /* and x and b are N by NRHS matrices. The test ratio is the maximum */ /* over the number of right hand sides of */ /* norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ /* where op(A) denotes A or A' and EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* TRANS (input) CHARACTER*1 */ /* Specifies the operation applied to A. */ /* = 'N': A *x = b (No transpose) */ /* = 'T': A'*x = b (Transpose) */ /* = 'C': A'*x = b (Conjugate transpose = Transpose) */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals or subdiagonals of the */ /* triangular band matrix A. KD >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices X and B. NRHS >= 0. */ /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ /* The upper or lower triangular band matrix A, stored in the */ /* first kd+1 rows of the array. The j-th column of A is stored */ /* in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* SCALE (input) DOUBLE PRECISION */ /* The scaling factor s used in solving the triangular system. */ /* CNORM (input) DOUBLE PRECISION array, dimension (N) */ /* The 1-norms of the columns of A, not counting the diagonal. */ /* TSCAL (input) DOUBLE PRECISION */ /* The scaling factor used in computing the 1-norms in CNORM. */ /* CNORM actually contains the column norms of TSCAL*A. */ /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* The maximum over the number of right hand sides of */ /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --cnorm; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } eps = dlamch_("Epsilon"); smlnum = dlamch_("Safe minimum"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); /* Compute the norm of the triangular matrix A using the column */ /* norms already computed by DLATBS. */ tnorm = 0.; if (lsame_(diag, "N")) { if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__2 = tnorm, d__3 = *tscal * (d__1 = ab[*kd + 1 + j * ab_dim1], abs(d__1)) + cnorm[j]; tnorm = max(d__2,d__3); /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__2 = tnorm, d__3 = *tscal * (d__1 = ab[j * ab_dim1 + 1], abs(d__1)) + cnorm[j]; tnorm = max(d__2,d__3); /* L20: */ } } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ d__1 = tnorm, d__2 = *tscal + cnorm[j]; tnorm = max(d__1,d__2); /* L30: */ } } /* Compute the maximum over the number of right hand sides of */ /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); ix = idamax_(n, &work[1], &c__1); /* Computing MAX */ d__2 = 1., d__3 = (d__1 = x[ix + j * x_dim1], abs(d__1)); xnorm = max(d__2,d__3); xscal = 1. / xnorm / (doublereal) (*kd + 1); dscal_(n, &xscal, &work[1], &c__1); dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & c__1); d__1 = -(*scale) * xscal; daxpy_(n, &d__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); ix = idamax_(n, &work[1], &c__1); err = *tscal * (d__1 = work[ix], abs(d__1)); ix = idamax_(n, &x[j * x_dim1 + 1], &c__1); xnorm = (d__1 = x[ix + j * x_dim1], abs(d__1)); if (err * smlnum <= xnorm) { if (xnorm > 0.) { err /= xnorm; } } else { if (err > 0.) { err = 1. / eps; } } if (err * smlnum <= tnorm) { if (tnorm > 0.) { err /= tnorm; } } else { if (err > 0.) { err = 1. / eps; } } *resid = max(*resid,err); /* L40: */ } return 0; /* End of DTBT03 */ } /* dtbt03_ */