/* dptt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublereal c_b4 = -1.; static doublereal c_b5 = 1.; static integer c__1 = 1; /* Subroutine */ int dptt02_(integer *n, integer *nrhs, doublereal *d__, doublereal *e, doublereal *x, integer *ldx, doublereal *b, integer * ldb, doublereal *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ integer j; doublereal eps; extern doublereal dasum_(integer *, doublereal *, integer *); doublereal anorm, bnorm, xnorm; extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaptm_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPTT02 computes the residual for the solution to a symmetric */ /* tridiagonal system of equations: */ /* RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* N (input) INTEGTER */ /* The order of the matrix A. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix A. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* The n by nrhs matrix of solution vectors X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* On entry, the n by nrhs matrix of right hand side vectors B. */ /* On exit, B is overwritten with the difference B - A*X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* RESID (output) DOUBLE PRECISION */ /* norm(B - A*X) / (norm(A) * norm(X) * EPS) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --d__; --e; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } /* Compute the 1-norm of the tridiagonal matrix A. */ anorm = dlanst_("1", n, &d__[1], &e[1]); /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X. */ dlaptm_(n, nrhs, &c_b4, &d__[1], &e[1], &x[x_offset], ldx, &c_b5, &b[ b_offset], ldb); /* Compute the maximum over the number of right hand sides of */ /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1); xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of DPTT02 */ } /* dptt02_ */